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Executive summary 
 

 
Seasonal forecast model outputs available in the C3S Climate Data Store have global coverage and               
spatial resolution of 1°. This resolution is usually too coarse compared to the scales needed in                
practical applications but also to the typical scales at which the latest reanalysis products (i.e.               
ECMWF ERA5) are available.  
The overall objective of our work has been to develop a downscaling chain employing the               
state-of-the-art techniques to disaggregate seasonal forecast model outputs to a target resolution of             
0.25°, comparable to that of reanalyses. The final product of this initiative is the delivery of a                 
high-quality dataset for precipitation and temperature variables over the Mediterranean area. All            
techniques employed in the downscaling chain are extensively documented in literature and            
implemented using functions from the R package CSTools (v3.0.0. or the forthcoming release). The              
downscaled model outputs are made publicly available, together with the R codes used to derive               
them.  
The present milestone provides technical information on the procedure that has been followed to              
disaggregate seasonal forecast model outputs, on the repository where the downscaled data are             
made available and on the steps to follow to access them.  
 

1. Seasonal forecast model bias and bias-adjustment methods 
 

Imperfect physical parameterizations and errors in the model initialization are often reflected in             
model bias. In order to use model outputs for applications, adjustment techniques are usually              
employed to mitigate the discrepancies between the model data and the observations.  
 
A range of bias adjustment methods with different degrees of complexity has been developed. Basic               
bias-adjustment methods correct the mean value by adding a temporally constant offset, or by              
applying a correction factor to the model data. This additive or multiplicative constant corresponds              
to the average deviation of the model time series from the observed time series over the reference                 
period.  
 
A generalization of this method is the quantile mapping that adjusts the quantiles of the distribution                
of the modelled variable based on the distribution of observations. In a comparison of              
bias-correction methods for hydrological impact studies, bias-correction algorithms based on          
quantile mapping have been found to outperform simpler bias correction methods that correct only              
the mean or the mean and variance of precipitation series (Cannon et al. 2015). 
 
In our downscaling chains we adjust temperature and precipitation seasonal forecasts with the             
quantile mapping method as defined in Gudmundsson et al. (2012). We use ERA5 at 0.25° upscaled                
at the same resolution as the seasonal forecast data, i.e. 1°, as a reference dataset. The Quantile                 
Mapping-based corrections are calculated and applied month by month using the corresponding R             
function CST_QuantileMapping() available in CSTools (see Appendix A and B) 
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Figure 1 shows an example of application of the quantile mapping method to ECMWFS5 seasonal               
forecasts of air temperature and daily precipitation. The figure displays the annual cycle of the               
ECMWFS5 model variables calculated by averaging all ensemble members and all hindcast years             
with starting date May 1st compared to the annual cycle in the ERA5 reference dataset.               
Temperature is underestimated during the whole season, with similar biases in all months. The              
model is able to capture the temporal distribution of precipitation, however it overestimates             
precipitation in the summer months. The application of the quantile-mapping method to ECMWFS5             
seasonal forecasts allows to adjust the average model bias and to improve the agreement with the                
ERA5 reference annual cycle for both variables. The quantile-mapping method is applied to all the               
seasonal forecast models to mitigate possible biases.  
 

 

 
Figure 1 (top) The orange box represents the domain for which we produced downscaled              
temperature and precipitation data (11°W,40°E; 20°N,52.5°N) identified in the text as the            
“Mediterranean” domain. To avoid border effects the spatial downscaling of precipitation is            
initially performed over the “full” domain shown in the plot (19°W,60.5°E; 0°N,79.5°N) and then              
only the gridpoints included in the Mediterranean domain are retained; (bottom left) Daily air              
temperature averaged over the Mediterranean domain, (bottom right) daily precipitation averaged           
over the full domain for the ECMWFS5 model (green), the ECMWFS5 model after the application               
of the quantile mapping (blue) and the ERA5 reference datasets upscaled at the model resolution.               
Start date May 1st, hindcast years 1993-2016 for temperature and 1993-2018 for precipitation,             
respectively. 
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2. Methods for spatial downscaling  
In order to bridge the gap between the scales of climate models and the scales needed for practical                  
applications, downscaling methods can be employed. The typical spatial resolution of seasonal            
forecast models is on the order of 1° (about 100 km) both in longitude and in latitude. The spatial                   
scales required for applications depend on the specific study but they can vary in a range between                 
tens of km down to hundreds of meters. In the following we will briefly present two methods that                  
can be applied to downscale two of the main climatic variables, surface air temperature and               
precipitation. These methods are documented in literature and we suggest to refer to the references               
reported in the text for further details.  
 

2.1Downscaling of surface air temperature  
In coarse-scale surface air temperature datasets, such as those provided by seasonal forecast models,              
one of the main features which influences the temperature at the sub-grid scale is the topography. In                 
fact, in mountain areas elevational gradients cause high spatial variability of air temperature over              
short distances. A simple method to downscale surface air temperature data consists of taking into               
account the effects of the sub-grid topography.  
 
The rate at which air cools with elevation may vary in the range between −9.8°C/km (dry-air                
adiabatic lapse rate) for unsaturated air and −4°C/km (saturated adiabatic lapse rate) for saturated              
air (Dodson and Marks 1997). The average temperature lapse rates show strong variability in             
relation to the climatic zone, with highest values reached in summer over tropical deserts and lowest                
negative values in winter over Siberia, Canada, and polar regions (Barry et al., 2008).  
A study focusing on the Austrian-Italian Alps and considering more than 600 meteorological             
stations representative of a wide elevation range (from 100 m a.s.l. to above 2000 m a.s.l.) showed                 
yearly lapse rates ranging from −5.4° to −5.8°C/km (Rolland et al. 2003). However, in absence of                
more accurate lapse rate estimates based on measurements along elevational transects, average            
temperature gradients of −5.5° (Angot 1892), −6.0° (Dodson and Marks 1997), or −6.5°C (1000              
m)−1 (Barry and Chorley 1987) are often used in applications.  
 
A simple method to downscale temperature data can exploit available information on lapse rate to               
correct the large scale temperature fields for the elevation mismatch between the coarse model              
orography and the fine-scale orography of the target grid. In addition to the coarse scale dataset to                 
be downscaled, the only required information is i) an environmental lapse rate and ii) the fine-scale                
orography. The fine-scale orography can be obtained, for example, by conservatively remapping a             
km-resolution digital elevation model (DEM) to the target grid. So the fine scale temperature field               
will be given by 

·(z )  t (x, t) = T[ (X  , t) ]x + L (x) − 〈z (x) 〉X  
 
where is the coarse-scale temperature field, is an interpolation operator to the fine T (X)       […]x         
scale , is an averaging operator at the coarse scale , is the DEM orography at the x 〈…〉   X          X  z (x)        
target resolution and L is the chosen environmental lapse rate. For interpolation two methods have               
been explored and implemented, providing similar results, a linear interpolation operator, or a             
nearest-neighbour interpolation, followed by a smoothing step using a flat circular kernel (with             
equal weights) with a given radius (typically half a pixel size of the coarse grid can be used). For                   
averaging, , the same smoothing is used. This method is particularly suited if no fine-scale  〈…〉X               
detailed climatology at the target resolution is available. 
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A second possible method is to exploit information from a reference fine-scale temperature             
climatology (if available, an example would be the EOBS or ERA5 climatologies). In this case a                
simple bias correction method can be applied to the coarse data interpolated to the fine scale: 
 

T  t (x, t) = T[ (X  , t) ]x + e (x, t) −  [ (X  , t) ]x  
 
where all symbols have the meaning defined above, is a fine-scale reference climatology,        e (x, t)       
and the overbar denotes climatological averaging in time. Notice that this transformation also             
guarantees that the resulting climatology is identical to the reference climatology: t (x, t) = e (x, t)  
 
 
In our application the goal is to downscale seasonal forecast data from 1° to 0.25° spatial resolution.                 
To test our downscaling methods we set up a “perfect model experiment” in which ERA5 daily air                 
temperature data at 0.25° spatial resolution have been upscaled to 1° and then downscaled back to                
0.25° with the two different methods presented above, i.e. one based on the lapse rate and the other                  
based on the reference climatology. The results of the two different downscaling procedures have              
been evaluated against the original ERA5 fields at 0.25° resolution. As an example, Table 1 reports                
the root mean square error (in K) between the downscaled daily data and the reference ERA5                
climatology in the Alpine region (4-19°E, 43-49°N). This test shows a significant improvement in              
the agreement of the downscaled data with the reference, particularly when a bias correction to a                
reference climatology is used, that both the nearest neighbour method with smoothing and the              
bilinear interpolation provide similar results and that the exact choice of the lapse rate has only a                 
small impact. 
 
 Climatology Lapse rate  

L=-5.5 K/Km 
Lapse rate  
L=-6.5 K/Km 

Only interpolation 

Nearest neighbour 0.520 1.079 1.082 1.399 

Bilinear 0.527 1.086 1.083 1.427 

Table 1. Root mean square error (in K) between ERA5 data at 0.25° and ERA5 data at 1°                  
downscaled with different methods, compared for the months from May to November in the years               
1993-2012, in the Alpine region. 
 
Within the MEDSCOPE project the downscaling methods described above have been implemented            
into the CSTools R package (Nuria Perez-Zanon et al., 2020), and specifically in the CST_RFTemp               
function. 
 
 

2.2Downscaling of precipitation: a stochastic approach 
 

Stochastic downscaling methods have been identified as particularly suitable for precipitation data            
(Maraun et al., 2010). We employed the RainFARM stochastic precipitation downscaling method            
(Rebora et al., 2006; D'Onofrio et al., 2014), recently extended to be used in complex orography                
(Terzago et al., 2018). Within the MEDSCOPE project the RainFARM method has been             
implemented in the CSTools R package (Nuria Perez-Zanon et al., 2020). 
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The stochastic precipitation downscaling method RainFARM has been conceived to downscale           
large-scale spatio-temporal precipitation fields by producing ensembles of stochastic realizations at           
finer spatial resolution, which preserve the large-scale statistical properties of the original field and              
with realistic spatial and temporal correlation structures. The RainFARM method can extrapolate            
the small-scale correlation structure of precipitation from the spatial power spectrum of the             
large-scale field and, in principle, it does not require further fields besides the original precipitation               
to downscale. It does not require, in fact, observational data for calibration as other statistical               
methods typically do. In presence of a reference fine-scale precipitation dataset, the small-scale             
correlation structure can be derived from it and then employed to generate the downscaled fields.  
 
An example of the spatial power spectrum of ERA5 daily precipitation at 0.25° over the full domain                 
shown in Figure 1 (period 1993-2018, month of January) is shown in Figure 2a. The spatial power                 
spectrum is approximately isotropic in space. The section of the spectrum shows an approximate              
power-law behavior, i.e. linear behavior in log-log coordinates as in Figure 2d,e. 
 

 

 

Figure 2. Example of spatial power spectrum (logarithm of the power spectral density) of the ERA5                
reanalysis at 0.25° over the full domain of Figure 1, period 1993-2018, month of January, obtained                
using a) ERA5 original data; b) ERA5 data weighted for the square root of the cosine of the                  
latitude; c) ERA5 data weighted for the cosine of the latitude; (d,e) Examples of power spectral                
density plotted in log-log coordinates for a winter month (January) and a summer month (July)               
respectively. Coloured lines correspond to the different ERA5 data used: original data (red), data              
weighted for the square root of the cosine of the latitude (blue); ERA5 data weighted for the cosine                  
of the latitude (green). 
 
The RainFARM method explained above does not take into account orographic effects at scales              
smaller than those resolved by the original precipitation field to downscale. The fine-scale             
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distribution of precipitation in the downscaled fields is not affected by the fine-scale orography, so               
the long-term climatology at individual grid points could differ significantly from observations in             
areas with complex topography and particularly in mountain regions. Applications for which the             
small-scale hydrological balance is important, such as studies of impacts on snow cover or water               
resources in small mountain basins, require the representation of orographic features. A simple             
modification has been recently implemented in the RainFARM method to include the orographic             
effects into the downscaled fields (Terzago et al., 2018). This method exploits information on the               
fine-scale precipitation climatology, usually available from spatial interpolation of observations          
from a dense network or from high-resolution model simulations. This reference climatology is             
used to derive corrective weights which are applied to the stochastic precipitation realizations             
generated by RainFARM. This method has been demonstrated to reproduce a more realistic             
long-term precipitation distribution at the fine scales (Terzago et al., 2018).  
 
We show here the RainFARM stochastic downscaling method in a “perfect-model” experiment            
using ERA5 daily precipitation reanalysis at 0.25° spatial resolution over the full domain shown in               
Figure 1. ERA5 precipitation fields at 0.25° resolution are first upscaled by aggregating them to a                
coarser resolution of 1° and then downscaled with RainFARM to the initial resolution of 0.25°               
(enabling the orographic correction). Spectral slopes are derived from the ERA5 0.25° fields for              
each month separately (Table 2) and five downscaling realizations are produced. The agreement             
between the downscaled data and the original 0.25° resolution data provides information on the skill               
of the downscaling method.  
 
Figure 3 summarizes the results of the perfect model experiment and shows separately the months               
from May to November (corresponding to the seasonal forecast starting date May 1st ) and from                
November to May (corresponding to the seasonal forecast starting date November 1st). For each              
starting date, each of the 26 seasons over the period 1993-2018 and eventually each downscaling               
realization a Probability Density Function (PDF) of the precipitation field is calculated. The plot              
shows the PDFs of ERA5 precipitation data downscaled from 1° to 0.25° spatial resolution (cyan               
line) compared to the original data at 1° (black line) and the original ERA5 data at 0.25° resolution                  
(blue line). The lines represent the 5-95th percentile range of the PDF ensembles. The PDF of the                  
downscaled dataset is in very good agreement with the PDF of the original fine-scale dataset,               
indicating that the method is able to reproduce the precipitation distribution with a high level of                
accuracy as well as the high-precipitation values, which were not captured by the upscaled ERA5               
data (black line). No remarkable differences are found considering the two different periods             
May-November of November-May. This exercise demonstrates that the RainFARM stochastic          
downscaling method successfully reconstructs the distribution of precipitation at the small scales.  
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Figure 3 The "perfect model" experiment: Probability density function (PDF) of ERA5 daily             
precipitation upscaled at 1° spatial resolution, of ERA5 downscaled from 1° to 0.25° compared to               
the original ERA5 data at 0.25° resolution. The lines represent the 5-95th percentile range of the                
PDF ensembles.  
 

3. The seasonal forecasts data archive 
The downscaling chains described above have been applied to seasonal forecasts data. We             
considered seasonal forecasts of air temperature (tas) and daily precipitation (prlr) from ECMWFS5             
and MFS6 models available on Copernicus Climate Change Service (C3S) and downloaded to the              
CINECA archive available to all MEDSCOPE project participants. Original seasonal forecast data            
are stored in the following folders: 
 
/CINECA01/home/DRES_MEDSCOPE/BSC/C3S/ecmwfS5/daily/prlr 
/CINECA01/home/DRES_MEDSCOPE/BSC/C3S/mfS6/daily/prlr 
 
/CINECA01/home/DRES_MEDSCOPE/BSC/C3S/ecmwfS5/6hourly/tas 
/CINECA01/home/DRES_MEDSCOPE/BSC/C3S/mfS6/6hourly/tas 
 
 
The archive stores seasonal forecasts with starting dates May 1st and November 1st and 7-months               
lead-time, covering the periods May-November and November-May, respectively, for all hindcasts           
years in the period 1993-2018. 
The seasonal forecast data, originally on 1° horizontal resolution grid have been downscaled to              
0.25° over the Mediterranean domain (Figure 1).  
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4. The downscaling of seasonal forecasts 

4.1Downscaling of air temperature  
Within the MEDSCOPE project we downscaled seasonal forecast air temperature datasets at 1°             
spatial resolution to 0.25° over the Mediterranean area by applying the spatial downscaling method              
described in Section 2.1. In particular, having determined in that section that the method based on a                 
reference climatology provides better results over areas with complex topography compared to a             
lapse-rate based method, we applied a correction using this method, with a fine-scale reference              
climatology provided by the ERA5 reanalysis (Hersbach and Dee, 2016;          
DOI: 10.24381/cds.adbb2d47) at 0.25° spatial resolution. 
 

4.2 Downscaling of precipitation  
We downscaled seasonal forecast precipitation datasets at 1° spatial resolution to 0.25° over the              
Mediterranean area by applying the RainFARM orographic downscaling method. We used the            
ERA5 reanalysis at 0.25° spatial resolution as a reference dataset to derive: 

● the spatial correlation structure of precipitation at the small scales, i.e. the slope of the power                
spectrum, for each month  

● the reference monthly precipitation climatology necessary for generating the orographic          
weights.  

We employed ERA5 for two reasons: i) it has a global coverage, including ocean areas commonly                
unavailable in observation-based datasets and key in our study, ii) it is defined at the target                
resolution of our downscaling exercise, i.e. 0.25°  
 
The RainFARM downscaling method has been originally developed and tested on spatial domains             
on the order of 100 Km. The applications over larger domains, such as the Mediterranean area on                 
the order of several 1000 Km, requires a preliminar applicability study.  
 
As the characteristics of precipitation can be very different within the Mediterranean region (with              
Western regions heavily exposed to Atlantic air masses, central Europe characterized by the             
interplay of continental and maritime air masses, mountain ranges subjected to orographic            
precipitation, North-Africa regions characterized by dry conditions, etc …) we tested the            
characteristics of ERA5 precipitation in terms of spatial power spectrum over different sub-regions             
of the Mediterranean domain (Figure 4, left).  
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Figure 4 (left) Sub-domains of the Mediterranean region for which we investigated the             
characteristics of the ERA5 daily precipitation fields in terms of spatial power spectrum; (right)              
logarithmic slopes of the spatial power spectra of ERA5 daily precipitation, for each month and               
each sub-domain.  
 
Figure 4 (right panel) reports the slopes of the spatial power spectrum for each month and in each                  
sub-domain shown in the left panel. As expected, some variability is found among different              
sub-domains. North-Mediterranean sub-domains are characterized by small differences in the          
monthly precipitation spectra and their logarithmic slopes. On the contrary, South-Mediterranean           
sub-domains are subjected to larger differences in monthly precipitation spectra and we obtain             
flatter power spectra in summer months compared to the rest of the year (logarithmic slopes               
comparable to or lower than 1). 
 
Since for the downscaling we need unique monthly slopes for the whole Mediterranean region, we               
decided to employ the slopes found for the North-Center sub-domain as they are comparable to               
those found for most sub-domains (N-West and N-East sub-domains in all month of the year, and                
South sub-domains in autumn, winter and spring months). To better reproduce the slope of the               
monthly spectra at the small spatial scales we fit the values corresponding to wavenumbers ≥ 5, a                
range where all the monthly power spectra show approximately a power-law behavior. The values              
of the spectral slopes are reported in Table 2. Southern sub-domains have generally flatter power               
spectra compared to the Northern sub-domains in summer months. Please note that our choice of               
unique monthly slopes for the Mediterranean region may result in a sub-optimal representation of              
the downscaled precipitation in North Africa in summer months (JJA). We recommend to evaluate              
fine-scale precipitation produced by RainFARM against observations before using the data for            
applications.  
 
Table 2 Logarithmic slopes of the spatial power spectrum of ERA5 precipitation at 0.25° over the                
North-Central Mediterranean region (2.5°E - 18.25°E; 37.5°N - 53.25°N, Figure 4) over the period              
19930101-20181231. Slopes are calculated considering wavenumbers ≥ 5 where the spectra follow           
approximately a power-law behavior.  
Logarithmic slopes of the ERA5 daily precipitation spatial power spectrum 

Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 

2.45 2.43 2.43 2.36 2.22 2.05 1.98 2.06 2.37 2.47 2.52 2.46 
 
 
As mentioned before, the domain of study is large and up to now we have considered all gridpoints                  
to have the same weight despite higher latitude gridpoints represent smaller areas compared to              
lower latitude gridpoints. We test the impact of this approximation in the following way. We derive                
a “modified” ERA5 dataset in which at each gridpoint the original ERA5 precipitation is              
“weighted” (multiplied) by a factor that is proportional to i) the square root of the cosine of the                  
latitude ii) the cosine of the latitude. In this way latitude grid cells closer to the equator are weighted                   
more than those poleward. The weights are also normalized so that they average to 1 over the                 
domain. 
We evaluated the spectra of the original ERA5 precipitation field and that of the two “modified”                
ERA5 fields, where the precipitation data are area-weighted as explained above. No remarkable             
difference is found among the power spectra (Figure 2d,e) so we employed the original ERA5 data                
in the downscaling chain. 
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The Mediterranean region includes several mountain ranges including the Alps, Pyrenees, Sierra            
Nevada, Atlas, etc .., which affects the spatial distribution of precipitation. We take into account the                
effects of complex topography on fine scale precipitation by applying the RainFARM downscaling             
algorithm optimized for mountain regions (Terzago et al., 2018). Orographic weights are derived on              
a monthly basis from ERA5 precipitation dataset at 0.25°.  
 
One of the advantages of stochastic downscaling methods is that they can generate ensembles of               
possible realizations of the downscaled fields, allowing us to evaluate the uncertainty associated to              
fine-scale fields. We fully exploit the potential of the RainFARM stochastic downscaling method             
by generating ensembles of 5 downscaling realizations for each seasonal forecast dataset.  

5. Evaluation of the downscaled seasonal forecasts  

5.1. Downscaled air temperature 
The bias adjusted and downscaled daily air temperature fields at 0.25° spatial resolution were              
evaluated against ERA5 temperature reanalysis at the same resolution. The comparison is            
performed in terms of root mean square error (RMSE) in time between the downscaled              
monthly-average air temperature and the corresponding ERA5 values (Figure 5, left panels). To             
highlight the added value of the downscaling method employed with respect to a simpler linear               
interpolation of the coarse-scale field to the fine-scale grid, we also show the RMSE of the seasonal                 
forecasts linearly interpolated to the fine scale with respect to the ERA5 reference (Figure 5, right                
panels). The RMSE is smaller for the downscaled fields than for the interpolated fields in all models                 
and all seasons, demonstrating an improvement of the downscaling method compared to a simpler              
linear interpolation.  
 
We finally quantified the effect of applying (or not) the quantile mapping adjustment to the original                
forecasts (“Raw”) before downscaling (Table 3). The application of the bias adjustment allows to              
remarkably reduce the RMSE compared to ERA5 reference data and the combination of the              
quantile-mapping and the downscaling shows the lowest RMSE for all models and seasons. 
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    Downscaling Bilinear interpolation  
 

 

 

 

  
Figure 5 Root mean square error between (left) the downscaled (right) the linear interpolated              
monthly-average air temperature seasonal forecasts and the reference ERA5 reanalysis, for           
ECMWFS5 and MFS6 models and for May 1st and November 1st starting date. 
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Table 3. Root mean square error between the monthly-average air temperature seasonal forecasts             
(first column) linearly interpolated, (second column) downscaled, (third column) bias-adjusted and           
linearly interpolated, (fourth column) bias-adjusted and downscaled to the target 0.25° grid and the              
reference ERA5 reanalysis, for ECMWFS5 and MFS6 models and for May 1st and November 1st               
starting dates. 
 

 RMSE [°C] 

 Raw + Bilinear 
Interpolation  

Raw + 
Downscaling 

QuantMap +  
Bil. Interpolation  

QuantMap + 
Downscaling 

ECMWFS5 - May 2.15 1.78 1.52 1.44 

ECMWFS5 - Nov 2.08 1.56 1.59 1.50 

MFS6 - May 1.93 1.42 1.24 1.13 

MFS6 - Nov 2.51 1.99 1.67 1.58 
  
 
 

5.2. Downscaled precipitation 
The downscaled precipitation fields at 0.25° spatial resolution produced with the RainFARM            
method were evaluated against ERA5 precipitation reanalysis at the same resolution. As done for              
the “perfect-case experiment” the comparison is performed in terms of probability density            
functions.  
Clearly we have to compare ensembles of PDFs: in the case of seasonal forecast precipitation data                
we obtained one PDF for each hindcast year, each ensemble member and each stochastic realization               
of the downscaled field; in the case of ERA5 we obtained one PDF for each hindcast year. From                  
each PDF ensemble we compute and compare the 5-95th percentile range.  
 
Figure 6 shows for each model, ECMWFS5 and MFS6, and each starting date, May 1st and                
November 1st , the 5-95th percentile ranges of the PDF ensembles generated from:  

i) The seasonal forecast data at 1° spatial resolution 
ii) The seasonal forecast data downscaled to 0.25° resolution 
iii) The reference ERA5 data at 0.25° resolution 

 
Seasonal forecast data at 1° resolution are unable to represent heavy-precipitation events            
particularly in summer. The application of the RainFARM downscaling allows to reconstruct the             
tails of the PDFs of the seasonal forecasts in a more realistic way, so that the PDFs of the                   
downscaled data are similar to those from ERA5 reference, in all seasons and for all models. We                 
can conclude that the application of the RainFARM method allows to obtain fine-scale precipitation              
fields with similar characteristics as those found in the reference data.  
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Figure 6. Probability density function (PDF) of daily precipitation from: seasonal forecasts at 1°              
spatial resolution, seasonal forecasts downscaled from 1° to 0.25°, ERA5 reanalysis at 0.25°             
resolution. The lines represent the 5-95th range of the PDF ensembles. The plots show the results                
for different models (ECMWFS5,MFS6) and different starting dates (May 1st and November 1st).  

6. Availability of the downscaled data 
 
The downscaled seasonal forecasts of air temperature and precipitation are accessible from the             
CINECA archive in the following folders: 
 
C- /CINECA01/home/DRES_MEDSCOPE/CNR-ISAC/downscaling/prlr/ecmwfS5 
C- /CINECA01/home/DRES_MEDSCOPE/CNR-ISAC/downscaling/prlr/mfS6 

 
C- /CINECA01/home/DRES_MEDSCOPE/CNR-ISAC/downscaling/tas/ecmwfS5 
C-/CINECA01/home/DRES_MEDSCOPE/CNR-ISAC/downscaling/tas/mfS6  
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Detailed information on how to access the CINECA server and download the data is available in                
this document:  
https://docs.google.com/document/d/1kFLXtGmR7RpaV4l9NTwDTsWDcuZOH1Y2VaGxRxWLIz0/e
dit?usp=sharing 
 
The R scripts to derive the downscaled data are provided in Appendix A (air temperature) and                
Appendix B (precipitation). 
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Appendix A – Code used for temperature downscaling  
library(devtools) 
library(zeallot) 
library(fields) 
library(raster) 
library(ncdf4) 
load_all("/work/users/giulio/git/cstools") 
 
in_dir <- "/work/users/giulio/temperature/" #main directory 
md <- c("0501","1101") #season - starting date 
var <- "tas" #variable name 
var_obs <- "t2m" #ERA5 variable name 
model <- c("ecmwfS5","mfS6") #model name 
clim_name <- c("era5_t2m_clim_summer_red.nc","era5_t2m_clim_winter_red.nc") #climatology 
name 
ye <- matrix(c(2016,2016,2018,2017),nrow = 2, ncol = 2) #end year 
 
#directories for delta saved data 
delta_dir <- paste0(in_dir,"downscaled/") 
delta_name <- c("delta_oro","delta_oro0","delta_clim") 
 
#interpolation method 
method <- c("bil","nearn") #interpolation method name directories 
met_n <- c("bilinear","nearest") #interpolation method name in function 
ne <- 25 #number of ensemble members 
df <- 4 #downscaling factor 
coo_geo1 <- c(-18,41,19,53) #coarse domain ECMWF 
coo_geo2 <- c(-19.5,42.5,17.5,54.5) #coarse domain Meteo France 
lapse_rate <- c(5.5,0.0,6.5) 
 
 
#orography 
oro_in <- paste0(in_dir,"datasets/oro_red.nc" 
oro_nc <- nc_open(oro_in) 
oro_data <- ncvar_get(oro_nc, "topo") 
oro_lon <- ncvar_get(oro_nc, "lon") 
oro_lat <- ncvar_get(oro_nc, "lat") 
oro <- list(data = oro_data, lat = oro_lat, lon = oro_lon) 
attr(oro, 'class') <- 's2dv_cube' 
 
for (i in 1:length(md)) { 
 
    #ERA5 climatology 
    clim_in <- paste0(in_dir,"datasets/",clim_name[i]) 
    clim_nc <- nc_open(clim_in) 
    clim_data <- ncvar_get(clim_nc, "t2m") 
    clim_lon <- ncvar_get(clim_nc, "lon") 
    clim_lat <- ncvar_get(clim_nc, "lat") 
    clim <- list(data = clim_data, lat = clim_lat, lon = clim_lon) 
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    attr(clim, 'class') <- 's2dv_cube' 
 
    for (j in 1:length(model)) { 
 
        #starting dates 
        ys <- 1993 
        ssd <- ys:ye[i,j] 
        s <- length(ssd) 
        sd <- array("",s) 
 
        #starting dates selection 
        for (k in 1:s) { 
            sd[k] <- paste0(ssd[k],md[i]) 
        } 
 
        #domain selection 
        if (j == 1) { 
            coo_geo <- coo_geo1 
        } else { 
            coo_geo <- coo_geo2 
        } 
 
        #seasonal forecast loading 
        print(paste0("Load Seasonal Forecasts ",model[j]," season ",md[i])) 
        tas_in <- paste0(in_dir, var, "/", model[j], "/$VAR_NAME$_$START_DATE$.nc") 
        tas_data <- CST_Load(var, exp= list(list(path = tas_in)), obs=NULL, sdates = sd, nmember = 
ne, storefreq = "daily",  
                     sampleperiod = 1, latmin = coo_geo[3], latmax = coo_geo[4], lonmin = coo_geo[1], 
lonmax = coo_geo[2],  
                     output = 'lonlat', nprocs = 6) 
        dim(tas_data$data) 
 
        #ERA5 Data loading 
        obs_in <- 
paste0(in_dir,"datasets/era5_obs/",model[j],"/era5_$VAR_NAME$_$START_DATE$.nc") 
        obs_data <- CST_Load(var_obs, exp= list(list(path = obs_in)), obs=NULL, sdates = sd, 
nmember = 1, storefreq = "daily",  
                     sampleperiod = 1, latmin = coo_geo[3], latmax = coo_geo[4], lonmin = coo_geo[1], 
lonmax = coo_geo[2],  
                     output = 'lonlat', nprocs = 6) 
        dim(obs_data$data) 
 
        #Monthly splitting 
        print("Monthly Splitting") 
        tasm <- CST_SplitDim(tas_data, split_dim = c('ftime')) 
        obsm <- CST_SplitDim(obs_data, split_dim = c('ftime')) 
        dim(tasm$data) 
        dim(obsm$data) 
 
        #Quantile Mapping 
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        print("Performing the QuantileMapping") 
        tas.qm <- CST_QuantileMapping(tasm,obsm, method = "QUANT", wet.day=F,sample_dims = 
c('member', 'sdate', 'ftime')) 
        dim(tas.qm$data) 
        # MergeDims 
        print("Restoring original dimensions") 
        tas.qmm <- CST_MergeDims(tas.qm, merge_dims=c("ftime", "monthly"),na.rm=TRUE) 
        # Adjust longitude to be monotonic [-180;180] 
        lon <- as.numeric(tas.qmm$lon) 
        tas.qmm$lon <- lon*(lon<=180)+(lon-360)*(lon>180) 
        lat=tas.qmm$lat 
        lon=tas.qmm$lon 
        l <- length(lon) 
        lf <- l*df 
        #directories for quantile mapping 
        qm_path <- paste0(in_dir,"tas_qm/",model[j],"/") 
        print("Save Bias-Adjusted") 
        CST_SaveExp(tas.qmm, qm_path) 
        rm(tas_data, tasm, tas.qm, tas.qmm,obs_data,obsm) 
 
        #Seasonal forecast loading (after quantile mapping) 
        print(paste0("Load Seasonal Forecasts ",model[j]," season ",md[i]," after quantile mapping")) 
        tas_in <- paste0(qm_path, "exp1/tas/$VAR_NAME$_$START_DATE$.nc") 
        tas_data <- CST_Load(var, exp= list(list(path = tas_in)), obs=NULL, sdates = sd, nmember = 
ne, storefreq = "daily",  
                     sampleperiod = 1, latmin = coo_geo[3], latmax = coo_geo[4], lonmin = coo_geo[1], 
lonmax = coo_geo[2],  
                     output = 'lonlat', nprocs = 6) 
        dim(tas_data$data) 
 
 
        for (l in 1:length(method)) { 
 
            for (m in 1:length(delta_name)) { 
 
                if (m == 3) { 
 
                    ref <- clim 
                    lapse_r <- TRUE 
 
                } else { 
 
                    ref <- oro 
                    lapse_r <- FALSE 
 
                } 
 
                lr <- lapse_rate[m] 
 
                #Delta computation 
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                delta <- CST_RFTemp(tas_data, ref, xlim = c(-11,40), ylim = c(20,52.5), lapse = lr, 
lon_dim = "lon",  
                                    lat_dim = "lat", time_dim=c("member", "sdate", "ftime"), nolapse = lapse_r, 
verbose = TRUE,  
                                    compute_delta = TRUE, method = met_n[l]) 
                print(min(delta$data)) 
 
                for (n in 1:s) { 
 
                    #seasonal forecast loading 
                    print(paste0("Load Seasonal Forecasts ",model[j]," season ",md[i]," method 
",method[l]," delta ",delta_name[m])) 
                    tas_sd_data <- CST_Load(var, exp= list(list(path = tas_in)), obs=NULL, sdates = 
sd[n], nmember = ne,  
                                         storefreq = "daily", sampleperiod = 1, latmin = coo_geo[3], latmax = 
coo_geo[4],  
                                         lonmin = coo_geo[1], lonmax = coo_geo[2], output = 'lonlat', nprocs = 6) 
                    dim(tas_sd_data$data) 
 
                    #temperature downscaling 
                    temp_ds <- CST_RFTemp(tas_sd_data, ref, xlim = c(-11,40), ylim = c(20,52.5), lapse 
= lr, lon_dim = "lon",  
                                    lat_dim = "lat", time_dim=c("member", "sdate", "ftime"), nolapse = lapse_r, 
verbose = TRUE,  
                                    delta = delta, method = met_n[l]) 
 
                    save_name <- paste0(delta_dir,delta_name[m],"/",model[j],"/",method[l],"/") 
 
                    #saving data 
                    CST_SaveExp(temp_ds,save_name) 
 
                    rm(tas_sd_data,temp_ds) 
                } 
                rm(delta) 
            } 
        } 
        rm(tas_data) 
    } 
    rm(clim_nc,clim_data,clim_lon,clim_lat,clim) 
} 
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Appendix B – Code used for precipitation downscaling 
 
#!/usr/bin/env Rscript 
# R script to downscale precipitation seasonal forecasts with the 
RainFARM method (D'Onofrio et al., 2014; Terzago et al., 2018) 
# using functions of the R CSTools package  
# 1. Load seasonal forecasts & ERA5 daily precip data, both at 1° 
spatial resolution 
# 2. Perform quantile mapping to correct ECDF on a monthly basis. 
Reference ERA5 1° res  
# 3. Get Monthly Slopes from ERA5 at 25 km 
# 4. Estimate orographic weights (monthly basis) from ERA5 at 25 
km 
# 5. Downscale month by month from 1° to 0.25° 
# Use:      Rscript 
/work/users/silvia/medscope/downscaling_med/rainfarm-downscale.R 
model   start_date_MMDD 
# Example:  Rscript 
/work/users/silvia/medscope/downscaling_med/rainfarm-downscale.R 
ecmwfS5 0501 
# 
# Pre-requisite: 
# Get ERA5  data: 
./work/users/silvia/medscope/downscaling_med/era5_data/get_era5.sh 
# Get model data: 
./work/users/silvia/medscope/downscaling_med/seasfc_data/download_
med_mmday.sh 
 
library( devtools ) 
library( zeallot) 
library( fields ) 
library( raster ) 
load_all () 
 
 
args =  commandArgs (trailingOnly= TRUE ) 
 
# test if there is at least one argument: if not, return an error 
if  ( length ( args) < 2 ) { 
        stop ("Two arguments must be supplied: model , startDate 
MMDD" ,  call. =FALSE ) 
        }  else  { 
                print ( paste( "Model: ",  args[ 1 ])) 
                print ( paste( "Starting date MMDD: " ,  args [ 2 ])) 
        } 
# end test 
###################### 
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# get or set variables 
model   <-  args[ 1 ] 
mmdd    <-  args[ 2 ] 
wdir    <-  "/work/users/silvia/medscope/downscaling_med/" 
outpath <-  paste0 ( wdir,    "output_qm/" ,  model,  "/") 
outdir  <-  paste0 ( outpath ,  "experiment/prlr/") 
downdir <- 
"/work/users/silvia/medscope/downscaling_med/downscaled/" 
system ( paste ("mkdir" ,  outpath )) 
 
era5clim <- 
"/work/users/silvia/medscope/CSTools/era5_tp_mon_latlon.nc" 
grid     <-  "/work/users/silvia/medscope/CSTools/clim.grd" 
 
infile     <- 
paste0 ( "/work/users/silvia/medscope/downscaling_med/seasfc_data/", 
model ,  "/$VAR_NAME$_$START_DATE$.nc" ) 
reffile    <- 
'/work/users/silvia/medscope/downscaling_med/era5_data/era5_$VAR_N
AME$_$START_DATE$.nc' 
 
# Spectral slopes (monthly scale) derived from ERA5 0.25° 
resolution over the domain 2.5/18.25/37.5/53.25 
# Slopes calculated from wavenumber >=5  
slope.mon <- 
c ( 2.45 , 2.43 , 2.43 , 2.36 , 2.22,2.05, 1.98 ,2.06 , 2.37 , 2.47 , 2.52 , 2.46 ) 
 
if ( mmdd == "0501"){ 
        mon       <-  c (5 : 11) 
        ltn       <-  c ( 1 , 32 , 62,93,124, 154, 185) 
        ltx       <-  c (31, 61 , 92,123, 153, 184, 214 ) 
        }  else  if  (mmdd =="1101")  { 
        mon       <-  c (11, 12 , 1 : 5) 
        ltn       <-  c ( 1 , 31 , 62, 93,121, 152, 182 ) 
        ltx       <-  c (30, 61 , 92,120, 151, 181, 212 ) 
} 
 
var = 'prlr' 
nens = 25 
lonn =- 19 
lonx = 60.5 
latn = 0 
latx = 79.5 
down_fact = 4 
nrealiz = 5 
y1 = 1993 
y2 = 2018 
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yrs  <-  y1 : y2 
nsd  <-  length (yrs ) 
sd   <-  vector () 
for  ( i in  1 : nsd)  {  sd [ i]  <- paste0(yrs[ i ], mmdd )} 
startDates <- sd   
 
# end get or set variables 
################################################################## 
 
# Load Seasonal Forecasts for the Bias Adjustment by Quantile 
Mapping 
print ( "Load Seasonal Forecasts for the Bias Adjustment by Quantile 
Mapping" ) 
 
exp <-  list ( name =  'experiment',  path = infile) 
obs <-  list ( name =  'observation' ,path =  reffile ) 
 
exp %<-%  CST_Load ( 'prlr' ,  exp = list ( exp), obs=NULL ,  sdates 
= startDates ,  nmember =  nens,  storefreq =  "daily",  sampleperiod = 
1 ,  latmin = latn,  latmax =  latx , lonmin =  lonn ,  lonmax =  lonx , 
output =  'lonlat' , nprocs = 6 ) 
 
obs %<-%  CST_Load ( 'prlr' ,  exp = list ( obs), obs=NULL ,  sdates 
= startDates ,  nmember =  1 ,  storefreq = "daily",  sampleperiod =  1 , 
latmin = latn , latmax =  latx,  lonmin = lonn , lonmax =  lonx ,  output 
=  'lonlat' , nprocs = 6) 
 
dim ( exp $ data ) 
dim ( obs $ data ) 
 
# SplitDim  
print ( "Splitting ftime by month ..." ) 
expm   <-  CST_SplitDim(exp, split_dim =  c ( 'ftime' )) 
obsm   <-  CST_SplitDim(obs, split_dim =  c ( 'ftime' )) 
obsm $ data <-  obsm $ data[,,,,,, 1 : 7] 
 
dim ( expm $ data) 
dim ( obsm $ data) 
 
# CST_QuantileMapping by month:  
# sample_dims: a character vector indicating the dimensions that 
can be used as sample for the same distribution 
# Please note that wet.day=T would be optimal but not enough 
non-zero data in a month to work 
print ( "Performing the QuantileMapping ..." ) 
exp.qm  <-  CST_QuantileMapping(expm , obsm ,  method =  "QUANT", 
wet.day = F , sample_dims = c ( 'member', 'sdate',  'ftime' )) 
dim ( exp.qm $ data) 
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# MergeDims 
print ( "Restoring original dimensions ...") 
exp.qmm <-  CST_MergeDims ( exp.qm,  merge_dims= c ( "ftime",  "monthly" ), 
na.rm = TRUE ) 
 
# Adjust longitude to be monotonic [-180;180] 
lon        <- as.numeric ( exp.qmm$lon) 
exp.qmm $ lon <-  lon *( lon<=180) + ( lon- 360) * ( lon> 180 ) 
lat = exp.qmm $ lat 
lon = exp.qmm $ lon 
l  <-  length (lon ) 
lf <-  l * down_fact 
 
print ( paste ("Save Bias-Adjusted data to" ,  outdir )) 
CST_SaveExp ( exp.qmm,  outpath ) 
 
rm ( exp ,  expm , exp.qm ,  exp.qmm ) 
 
########################################## 
# Downscaling by month (slope by month)   
print ( "Subsetting data by month ... " ) 
 
infile     <- paste0 ( outdir,  "$VAR_NAME$_$START_DATE$.nc" ) 
exp        <- list (name =  'experiment', path = infile ) 
 
for  ( i in  1 : length (mon)){ 
 
        # Check month 
        mm <- sprintf ( "%02d" ,  mon[ i ]) 
        print( mm ) 
        system (paste0 ( "mkdir ", downdir ,  "mon_" ,  mm)) 
 
        # Use slopes from ERA5  
        slo <-  slope.mon [ mon[ i ]] 
   
        # Get weights from ERA5  
        print( "Get weights from ERA5") 
        climmon <-  paste0( "clim_" , mm,".nc") 
        system (paste ( "rm" ,  climmon)) 
        cmd0    <-  paste0( "cdo remapnn," ,  grid ,  " -selmon," ,  mm,  " 
" ,   era5clim , " " ,  climmon) 
        system (cmd0) 
        w_clim_tmp <- CST_RFWeights( climmon,  lat = lat,  lon = lon , 
nf = down_fact ) 
        # Get rid of NaN in the weights 
        r <-  raster( nrow = lf,  ncol= lf) 
        r []  <-  w_clim_tmp 
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        base  <-  raster( nrow = lf, ncol= lf) 
 
        if  (  length( table ( is.na( as.matrix ( r)))) > 1  )  { 
                while  (table ( is.na ( as.matrix ( r )))[ 2 ] > 0 )   { 
                        r <-  resample( r ,  base ,  method = 'bilinear') 
                        if ( length(table ( is.na ( as.matrix ( r ))))  ==1 
)  break 
        } 
        } 
 
        w_clim <-  as.matrix( r ) 
 
 
        # Get seasonal forecast for month mm, loop on start-date  
        print( "Get seasonal forecast for month mm, loop on 
start-date" ) 
        for  (j in  1: length(startDates)){ 
 
                if  ((mmdd =="1101") && ( startDates== 1995  | 
startDates == 1999  |  startDates ==2003 | startDates== 2007 
| startDates ==2011  | startDates== 2015 )){ 
                        print ("Anno Bisestoxxx" ) 
                        ltn       <- c(  1 , 31,62 ,  93, 122 , 153, 183 ) 
                        ltx       <- c( 30,61,92, 121 , 152, 182 , 213) 
                } 
                print ( startDates [j ]) 
                ls %<-%   CST_Load( 'prlr', exp = list ( exp ), obs = NULL , 
sdates = startDates [j ], nmember =  nens,  leadtimemin =  ltn [ i ], 
leadtimemax = ltx[ i ], 
                          storefreq = "daily",  sampleperiod =  1 , 
latmin = latn , latmax =  latx,  lonmin = lonn , lonmax =  lonx , 
                          output =  'lonlat' , nprocs = 6 ) 
                lon    <- ls$ lon 
                ls $lon <- lon * ( lon<=180 ) + (lon- 360) * ( lon > 180) 
 
                # Orographic downscaling 
                print ( "Orographic downscaling") 
                for ( k in 1: nrealiz){ 
 
                        k2 <- sprintf("%03d", k) 
                        fs <- CST_RainFARM( ls,nf = down_fact , 
weights = w_clim , slope = slo ,  kmin= 1,  nens = 1 , verbose = TRUE , 
                                time_dim = c( "member" , "sdate", 
"ftime" ),  nprocs = 6 , drop_realization =T ) 
 
 
                        # Save output  
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                        print ( paste0("Saving output to: " , 
downdir ,  "mon_",  mm,  "experiment/prlr/")) 
                        CST_SaveExp( fs,  paste0 ( downdir ,  "mon_" , 
mm )) 
                        filetmp =paste0(downdir,  "mon_" ,  mm , 
"/experiment/prlr/prlr_" ,  startDates[j ], ".nc" ) 
                        fileout =paste0(downdir,  "mon_" ,  mm , 
"/experiment/prlr/prlr_" ,  startDates[j ], "_rainfarm_" ,  k2 , ".nc" ) 
                        system(paste ("mv" ,  filetmp ,  fileout )) 
                        rm(fs) 
                } 
                rm ( ls) 
        } 
} 
 
 
# Mergetime 
print ( paste0( "Merge monthly downscaled data by starting date, 
then write output to: ",  downdir , model, "/")) 
system ( paste0( "mkdir ", downdir,  model, "/")) 
for  ( j in  1 : length (startDates)){ 
        for  (k in  1: nrealiz){ 
                k2 <- sprintf ( "%03d", k) 
                nfiles     <- paste0(downdir, 
"mon_*/experiment/prlr/prlr_" ,  startDates[ j], "_rainfarm_" ,  k2 
, ".nc" ) 
                downfile   <- paste0(downdir,  model ,  "/prlr_" , 
startDates [ j ],  "_rainfarm_",  k2 , ".nc" ) 
                system(paste ( "cdo mergetime",  nfiles ,  downfile )) 
        } 
} 
 
# End downscaling 
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