

ERA4CS Joint Call on Researching and Advancing Climate Services Development – Topic B (GRANT AGREEMENT 689029)

European Climate Observations, Monitoring and Services initiative (2)

Milestone M2.3

Preliminary version of empirical forecast systems available for comparison with dynamical forecasting systems

Table of contents

Summary	3
1 Introduction	3
1.1 Choosing the model	4
2. Rationale	4
2.1. Soil moisture	4
2.2 Choosing predictands	5
2.3 Exploration of predictors	5
2.4 Running the model	11
2.5 Verification of results	12
3. Results.	12
3.1 Precipitation forecast.	12
3.2 Temperature forecast	13
3.3 Verification.	13
4. Conclusions	26
References	27
Tables and Figures	29

Summary

In the frame of MEDSCOPE project, which mainly aims at improving predictability on seasonal timescales over the Mediterranean area, a seasonal forecast empirical model making use of new predictors based on a collection of targeted sensitivity experiments is being developed. Here, a first version of the model is presented. This version is based on multiple linear regression, using global climate indices (mainly global teleconnection patterns and indices based on sea surface temperatures, as well as sea-ice and snow cover) as predictors. The model is implemented in a way that allows easy modifications to include new information from other predictors that will come as result of the ongoing sensitivity experiments within the project.

Given the big extension of the region under study, its high complexity (both in terms of orography and land-sea distribution) and its location, different subregions are affected by different drivers at different times. The empirical model makes use of different sets of predictors for every season and every subregion. Starting from a collection of 25 global climate indices, a few predictors are selected for every season and every subregion, checking linear correlation between predictands (temperature and precipitation) and global indices up to one year in advance and using moving averages from two to six months. Special attention has also been payed to the selection of predictors in order to guaranty smooth transitions between neighbour subregions and consecutive seasons. The model runs a three-month forecast every month with a one-month lead time.

1 Introduction

Dynamical models for seasonal forecasting have noticeably improved during the last decades mainly due to the advance both in the estimate of the atmospheric initial conditions as well as the model physics supported further by computing capabilities. However, they still show low skill over extratropical latitudes. The surroundings of the Mediterranean Sea are specially affected by this low skill, due either be to inherent lack of predictability or to errors in forecasting systems, being exacerbated by its complex orography and land-ocean distribution. Besides, the Mediterranean region is located in a transition zone between the arid belt of Northern Africa and the temperate zones over Europe. Another distinctive feature is the type of precipitation: over most of the domain, a high fraction of annual precipitation is convective, implying high spatial and temporal variability. It is not infrequent that average expected precipitation for a three months period can be reached in one single day for particularly intense events. In this context, the Mediterranean Services Chain based On Climate PrEdictions (MEDSCOPE) project (see https://www.medscope-project.eu) and others, developed under initiatives like the European Research Area for Climate Services (ERA4CS) (see http://www.jpiclimate.eu/ERA4CS) aim at improving Climate Services over this region, searching for new sources of predictability and developing different tools and products. In particular, one of the MEDSCOPE work packages consists of a collection of sensitivity experiments designed to explore new sources of predictability that may lead to improvements in our understanding of mechanisms and processes involved at seasonal timescales. As result of the sensitivity experiments conducted within the

Medscope Milestone M2.3

3

Comentado [ERC1]: Creo que habitualmente se escribe junto en inglés: subregions. También sub-regions. Separado lo he visto pocas veces.

MEDSCOPE project, new specific predictors will be proposed for the Mediterranean region. A byproduct of this exploration will be the development of an empirical seasonal forecasting system bringing together predictors coming from new sources of predictability unveiled by the sensitivity experiments.

1.1 Choosing the model

Here we present a preliminary (beta) version of the empirical seasonal forecasting system specifically designed for the Mediterranean region. The purpose of this beta version is twofold: first, establish a reference version based on standard predictors making use of known sources of predictability and, second, compare its skill over the Mediterranean with the state-of-the-art dynamical systems. In this way, we can easily incorporate new predictors as they arise within the project and estimate the skill of future improvements with respect to this beta version. Eden et al. (2015) developed a global empirical seasonal forecasting system based on Multi Linear Regression (MLR), using a few global climate indices as predictors, and producing a probabilistic output using the residuals from regression. This system shows ability to produce skilful forecasts over several world regions, despite the reduced number of predictors used. Wang et al. (2017) showed, using MLR too, that a careful selection of predictors can produce skilful prediction of winter NAO.

The beta version of the empirical seasonal forecasting system here described will follow the same procedure based on MLR suggested by these two papers as this kind of models only requires very modest computing resources and has the additional advantage of being easy to modify. The second version of the empirical seasonal forecasting system, incorporating results from MEDSCOPE findings, will be developed and evaluated in the second part of the project.

2. Rationale

2.1. Definition of subregions

Given the extension of the Mediterranean domain, its great complexity (both orographic and landocean distribution), and location, subregions within the domain are affected by different factors at different times of the year. In order to improve the skill of the system, the empirical model will use different sets of predictors for every subregion and every season. However, one issue with this type of models is that they can be quite noisy showing very different results for neighbour grid points. So, as a compromise between selecting the best predictors for every point and forecasting synoptic scale anomaly patterns, the domain is divided in subregions. A different set of predictors will be selected for each subregion. Additionally, and to avoid abrupt transitions in space and time, predictors will be restricted to partially match among neighbour subregions and consecutive seasons (for example, January-March and February-April). To further smooth out transitions among subregions, they have been defined with a high amount of overlap. Those grid points belonging to more than one subregion will be assigned a weighted average from values from different subregions, based on distance to respective borders.

Subregions have been defined based on a principal components analysis of annual precipitation, taking the three first empirical orthogonal functions (EOFs) into account. Subregions have been defined seeking a compromise between encompassing main anomaly patterns from the three first precipitation

EOFs, and main land areas and countries. Figure 1 depicts the proposed subregions, showing the EOFs as background.

2.2 Choosing predictands

As we intend to deliver synoptic scale anomaly patterns, low- resolution predictands will be selected for this beta version of the system. Precipitation data from the Global Prediction Climate Centre (GPCC) dataset (Schneider et al. (2017)) will be used (2.5 degree version). Data will be a blend of GPCC v7 (until 2013) and its monitoring (v5) from 2014 onwards. Surface temperature will be obtained from the ERAinterim reanalysis (Dee et al. (2011)). In both cases, predictands will consist of the three months average for every season and grid point. The empirical model will be run every month with one- month lead time, i.e., computing a forecast for the following season (three months) and for both predictands. For example, in January, the forecast will be calculated for February-March-April.

2.3 Exploration of predictors

This beta version of the empirical model will exclusively make use of global climate indices provided by external sources. The initial proposal includes 25 monthly time series of indices associated to global teleconnection patterns, SST-based patterns (from Pacific, Atlantic and Indian oceans), ocean heat content, sea-ice and snow cover (table 1).

		http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_i
		ndex/
AAO	Antartic Oscillation	aao/monthly.aao.index.b79.current.ascii
		http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_i ndex/
AO	Arctic Oscillation	monthly.ao.index.b50.current.ascii
NAO	North Atlantic Oscillation	https://climexp.knmi.nl/data/icpc_nao.nc
EA	East Atlantic Pattern	http://climexp.knmi.nl/data/icpc_ea.nc
EA/WR	East Atlantic/Western Russia	http://climexp.knmi.nl/data/icpc_ea_wr.nc
SCAND	Scandinavia Pattern	ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/scand_index.tim
SAM	Southern Annular Mode	http://www.nerc-bas.ac.uk/public/icd/gjma/newsam.1957.2007.txt
WP	West Pacific Pattern	ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/wp_index.tim
PDO	Pacific Decadal Oscillation	https://www.ncdc.noaa.gov/teleconnections/pdo/data.csv
MEI	Multivariate ENSO Index	https://www.esrl.noaa.gov/psd/enso/mei/table.html
SOI	Southern Oscillation Index	http://www.cpc.ncep.noaa.gov/data/indices/soi
Niño12	El Niño Index, región 1+2	https://climexp.knmi.nl/data/iersst_nino12a.nc
Niño34	El Niño Index, región 3.4	https://climexp.knmi.nl/data/iersst_nino3.4a.nc
Niño3	El Niño Index, region 3	https://climexp.knmi.nl/data/iersst_nino3a.nc
Niño4	El Niño Index, región 4	https://climexp.knmi.nl/data/iersst_nino4a.nc
q300	Heat content over first 300m of the Pacific equatorial band	https://climexp.knmi.nl/data/icpc_eq_heat300.nc
Sn_EuA	Snow Cover Over Eurasia	https://climate.rutgers.edu/snowcover/files/moncov.eurasia.txt
Sn_NA	Snow Cover Over North America	https://climate.rutgers.edu/snowcover/files/moncov.namgnld.txt
Sn_NH	Snow Cover Over North Hemisphere	https://climate.rutgers.edu/snowcover/files/moncov.nhland.txt
DMI	Dipole Mode Index	https://climexp.knmi.nl/data/idmi_ersst.nc
SEIO	South Eastern Indian Ocean	https://climexp.knmi.nl/data/iseio_ersst.nc
TNA	Tropical North Atlantic	https://www.esrl.noaa.gov/psd/data/correlation/tna.data
TSA	Tropical South Atlantic	https://www.esrl.noaa.gov/psd/data/correlation/tsa.data
TASI	Calculated from ERSSTv5, NTA (average 20W-40W, 5N-20N) – SAT (average 15W-5E,20S-5S).	https://climexp.knmi.nl/NCDCData/ersstv4.nc
WHWP	Western Hemisphere warm Pool	https://www.esrl.noaa.gov/psd/data/correlation/whwp.data

Table 1. Climate indices tested as predictors.

Additionally, for each index, a new monthly time series is generated calculating the incremental value from the previous month (e.g., February value would be February minus January). The purpose of such incremental series is to try to find additional sources of predictability by analysing if a rapid change in the state of a certain indicator could be linked to anomalous atmospheric circulation. Before exploring these 50 indices (25 climate indices plus their 25 incremental series), moving averages from two to six months are applied, to better capture mechanisms from different time scales.

To check if one of these indices can be considered a predictor for a certain area, linear correlation between monthly values of the index and seasonal average of the predictand is calculated for every grid point of the area, checking the percentage of grid points that overpass certain threshold (significant correlation at 90%) for correlation. For one particular season, correlation between the predictand value and the index is computed applying different lead times (from one to twelve months). Correlation is also computed for six different options of moving average (from no moving average applied up to six months moving average). So, for a particular index and season, a table of predictors (see Table 2) will be obtained, having as many columns as lead time values and as many rows as moving average options.

GPCC		JFM							FMA										
	mv.avg \ lead	-2	-3	-4	-5	-6	-7	-8	-9	-10	-2	-3	-4	-5	-6	-7	-8	-9	-10
	1M	12	18	12	24	3	3	6	0	12	0	15	18	18	27	18	6	9	0
	2M	0	18	18	18	24	6	6	0	3	0	9	18	15	30	21	15	3	0
DMI	3M	0	0	24	24	24	15	9	0	0	0	0	15	15	18	21	21	9	0
2	4M	0	0	0	24	27	18	12	3	0	0	0	0	15	18	21	21	15	3
	5M	0	0	0	0	30	18	18	9	0	0	0	0	0	18	18	21	24	18
	6M	0	0	0	0	0	27	21	18	6	0	0	0	0	0	18	18	18	21
	1M	9	9	0	15	12	0	12	9	9	18	0	12	3	9	0	21	6	3
	2M	0	6	0	0	27	3	6	21	6	0	18	0	15	3	24	15	3	15
incr DMI	ЗM	0	0	12	3	0	12	6	12	18	0	0	15	3	0	12	42	0	3
	4M	0	0	0	0	15	3	18	18	9	0	0	0	24	0	3	21	15	6
	5M	0	0	0	0	12	9	9	33	15	0	0	0	0	6	0	12	3	12
	iberia	0	0	0	0	0	12	18	15	27	0	0	0	0	0	3	6	15	12

Table 2. Correlation table of Dipole Mode Index (DMI) and its incremental series and January-March and February-April seasons for precipitation.

Bearing in mind the known relative low predictability for the area studied, this procedure will try to unveil the best possible signal that a climate index can offer as a predictor playing with different lead times and moving averages. Considering correlation data from the different climate indices, and applying the restrictions proposed for continuity among regions, a set of predictors is selected for every region (see Table 3).

	Morocco	Iberia	France	Central -	Italy	Algeria	Lybia	Balkans	East	Turkey	East
				Europe		Tunisia			Europe		Mediterra
											liedii
JFM	I_AAO_S	I_AAO_JJA S	EA_SON	AAO_Ag	EA_ON	NAO-N	NAO_JA	SOI_JJ	SOI_JJ	SOI_Jul	SOI_JJ
	EA_ON	FA JUAS	I_AAO_JJAS	SOI_JJ	I_Sn_Na_O	Sn_NA_O	I_Sn_Na_SO	EA_SON	EA_SON	EA_SON	NAO_JA
	TNA_July		EA_JJAS	I_AAO_S	SOI_JJ	I_Sn_Na_SO	TNA_ON	AO_Jul	NAO_N	AO_Jul	EA_SON
	I_Sn_Na_SO		SOI_JJ	EA_ON	I_Sn_EuA_O	SOI_JJ	I_Niño4_N	I_Sn_EuA_SO	DMI_May	Niño34_Jul	I_MEI_N
	DMI_SON		I_Sn_EuA_Ju	I_SnNa_O	DMI_ASO	I_Niño4_N		Niño3_MJ	I_MEI_N		Niño12_Jun
		201_33	n	I_SOI_O	I_AAO_S						
FMA	I_AAO_S	I_AAO- JJAS	I_AAO_JJAS	SOI_JJ	I_Niño4_N	NAO-ND	NAO_JA	EA_SON	SOI_JJ	SOI_Jul	NAO_JA
	NAO-OND	NAO-OND	NAO-OND	I_AAO_S	I_Sn_Na_O	Sn_NA_O	I_Sn_Na_SO	AO_Jul	EA_SON	EA_SON	EA_SON
	I_Niño4_N	EA OND	I_Niño4_N	I_SnNa_O	SOI_JJ	I_Sn_Na_SO	TNA_ON	I_Sn_EuA_SO	NAO_ND	I_Sn_EuA_ S	I_MEI_N
	EA_OND		TNA_D	I_SOI_O	EA_ON	SOI_JJ	I_SOI_O	Niño3_MJ	DMI_May	Niño34 Jul	Niño12_Jun
	TNA_July		SOI_JJ		DMI_ASO	I_Niño4_ND	I_Niño4_N	I_MEI_N	I_MEI_N	1411004_001	
	TNA_D		I_Sn_EuA_Ju	I	I_AAO_SON	TNA_ND	EA/WR_O				
	I_Sn_Na_SO	501_JJ	n								
	DMI_SON	I_NIN04_N									
MA	NAO-ONDE	NAO-	NAO-ONDE	SOI_JJ	I_Niño4_N	NAO-ND	NAO_JA	AO_Jul	EA_SON	NAO_JJA	NAO_JA
М	I_Niño4_N	ONDE	I_Niño4_N	I_AAO_SO	TNA_July	Sn_NA_O	I_Sn_Na_SO	I_Sn_EuA_SO	NAO_ND	SOI_Jul	EA_SON
	TNA_July	I_Niño4_N	TNA_July	N	TNA_DE	I_Sn_Na_SO	TNA_ON	Niño3_MJ	DMI_May	EA_SON	I_MEI_N
	TNA_DE	TNA_July	TNA_DE	I_SnNa_O	SOI_JJ	SOI_JJ	I_SOI_O	I_MEI_N	I_MEI_N	I_Sn_EuA_	Niño12_Jun
	I_Sn_Na_SO	TNA_DE	SOI_JJ	TNA_DE	EA_ON	I_Niño4_ND	DMI_E	I_SCAND_DE		S	
	DMI SON	I_TNA_ND		I_SOI_O	DMI ASO	TNA ND	EA/WR O			Niño34_Jul	
		DMI_SON			I AAO SON	_					
		SOI_JJ									
AMJ	NAO-ONDE	NAO-	NAO-ONDE	SOI_JJ	I_Niño4_N	NAO-ND	I_Niño3_NDE	I_Niño3_NDE	NAO_ND	NAO_JJA	NAO_JAS
	I_Niño4_N		I_Niño4_N	TNA_DE	TNA_July	Sn_NA_O	I_Sn_Na_SO	AO_Jul	AO_EF	I_Sn_EuA_	I_MEI_N
	TNA_July	INA_July	TNA_July	TNA_AS	TNA_DE	I_NAO_EF	TNA_ON	I_Sn_EuA_SO	I_MEI_N	5	I_Niño4_F
	TNA_DE	TNA_DE	TNA_DE	NAO_EF	EA_ON	I_SOI_F	I_SOI_O	I_MEI_N	I_AAO_ND	Niño34_Jul	SAM_ONDE
	DMI_SON	DMI_SON	TSA_F	I_AAO_ND		SOI_JJ	DMI_E	I_AAO_NDE	EF	I_Niño4_F	I_NAO_F
	I_NAO_EF	I_TNA_ND	I_NAO_EF	E		I_Niño4_ND	EA/WR_O	I_SCAND_DE			
		I_NAO_EF	SOI_JJ			TNA_ND					
		SOI_JJ	I_Sn_EuA_E								
			F								
MJJ	TNA_July	TNA_July	TNA_July	TNA_E	TNA_July	Sn_NA_O	I_Niño3_NDE	I_Niño3_NDE	AO_EF	NAO_JJA	NAO_JAS
	TNA_DE	NAO-NDE	TSA_FM	TNA_AS	EA_ON	I_NAO_EF	I_SOI_O	I_MEI_N	I_MEI_N	Niño34_Jul	l_Niño4_F
	I_NAO_EF	i_EA/WR_F	I_NAO_EF	NAO_EF	I_AAO_NDE	I_SOI_F	DMI_E	DMI_Mar	DMI_E	DMI_Mar	I_EA/WR_M
	TSA_FM	IVI	I_Sn_EuA_E	I_AAO_ND	EA/WR_E	TNA_DEF	EA/WR_O	I_AAO_NDE	I_AAO_ND	I_Niño4_F	arzo
		INA_DE	F	E	SAM_O	TSA_FM	PDO_N	L_SCAND_DE	EF		Sn_EuA_E
		I_TNA_ND E		SAM_O							DMI_E
		1	1	1		1			1	1	

		I_NAO_EF									SAM_ONDE
		I_EA_O									I_NAO_F
JJA	TNA_DE	i_EA/WR_	i_EA/WR_DE	NAO_EF	EA_ON	I_NAO_EF	I_Niño3_NDE	I_Sn_EuA_E	AO_EF	NAO_JJA	l_Niño4_F
	I_NAO_EF			I_AAO_ND	I_AAO_NDE	I_SOI_F	DMI_E	I_Niño3_NDE	I_MEI_N	DMI_Mar	I_EA/WR_M
	I_SOI_EFMA	TNA_DE	i_q300_SON DE	E	EA/WR_E	TNA_DEF	EA/WR_O	I_MEI_N	DMI_E	DMI_E	А
	TSA_FM	I_NAO_EF	i SAM NDE	SAM_O	SAM_O	TSA_FM	PDO_N	DMI_Mar	I_AAO_ND	I_Niño4_F	Sn_EuA_E
	_	I_SOI_F	F	I_Sn_EuA_	- I SnEuA MA	_			EF	L FA/WR	DMI_E
		I_MEI_AS	TSA_AS	E	020				I_Sn_NH_	MA	SAM_ONDE
		ON	TSA_FM					-SCAND_DE	Мауо		I_NAO_F
		i_q300_ON D	I_NAO_E					I_Sn_NH_May o			
		i_SAM_ND	I_Sn_EuA_E								
		E	F								
JAS	TNA_DE	EA/WR_DE	i_EA/WR_ND	NAO_EF	I_AAO_NDE	I_NAO_EF	I_NAO_EF	I_Sn_EuA_E	I_MEI_N	DMI_E	I_Niño4_F
	I_NAO_EF		E 200 SON	I_AAO_ND	EA/WR_E	I_SOI_F	I_EA/WR_O	DMI_Mar	DMI_E	I_Niño4_F	I_EA/WR_M
	I_SOI_EFMA	AAO_DE	D		SAM_O	TSA_FM		I_SCAND_DE	I_AAO_ND	I_EA/WR_	
	TSA_FM	I_SN_HN_ E	i_AAO_NDE	SAM_O	DMI_D	I_EA/WR_O	EA/WR_O	I_NAO_E	E⊦	MA	DMI_D
		I SAM EF	i SAM NDE	I_Sn_EuA_ E	I_SnEuA_EF	ND	PDO_N	PDO_N	I_Sn_NH_ Mavo	I_NAO_FM	I_NAO_F
		MA	FM		м		l_niño3_FMA	I Sn NH Mav		EA_FM	PDO_N
		I_snow_NH	iniño3_O					0			
		_E	i_whwp_SON								
		i_whwp_O N	I_Sn_EuA_E								
		NDEFM									
		i_q300_SO N									
		I_SOI_EF									
ASO	PDO_EF	I_EA/WR_	I_AAO_EFM	EA/WR_E	EA/WR_E	I_SOI_F	TNA_MA	I_Sn_EuA_E	I_MEI_N	DMI_D	I_EA/WR_M
	I_niño_3_DE	EFMAM	A	EA_F	DMI_D	SEIO_J	I_TASI_FM	I_SCAND_DE	DMI_E	I_EA/WR_	A
	FM	SAM_D	DMI_NDE	I Sn EuA	I SnEuA EF	SAM DE	I EA/WR O	I NAO E	I Sn NH	MA	Sn_EuA_E
	DMI_MJ	AAO_DE	I_EA/WR_EF	E	M		ND	PDO N	Mayo	TNA_FM	DMI_D
	TNA_DE	I_Sn_HN_		DMI_EF	I_EA_M	ND	PDO_N	Sn NH May	I_MEI_May	I_MEI_May	I_NAO_F
	I_SOI_EFMA	E	1_q300_ON				I_NAO_F	0	U 	0	PDO_N
	TSA_FM	DMI_NDE	i_DMI_FMAM J				SAM_D	DMI_D	EA_FM	I_NAO_FM	I_MEI_MJ
		i_q300_ON	a300 Jun				I niño3 FMA	EA FM	DMI_D	EA_FM	l niño3 FM
		i_niño3_SC						– L niño3 FMA			Α
			SEIO								
		i_wnwp_0 N	I_SN_EUA_E								

SON	PDO_EF I_niño_3_DE FMA DMI_MJ TNA_DE I_SOI_FMA	LAAO_EF MA I_SOI_EF I_SOI_EF DMI_NDE Q300_JJ I_DMI_FM AMJJ L_MEI_DEF MAM I_SN_EUA_ E L_TASI_MA I DMI_AMJ I_SOI_EF	AAO_D L_AAO_EFM A DMI_NDE Q300_JJ Niño3_MA L_DMI_FMAJ J L_niño3_Jun L_MEL_DEFM AM L_TASI_Mar L_TASI_Mar L_Sn_EuA_E	EAWR_E EA_F I_Sn_EuA_ E DMI_EF	EAWR_E DMI_D I_SNEUA_EF M I_EA_M	SEIO_J I_niño3_FMA SAM_DE I_TASI_FM	TNA_MA I_TASL_FM I_NAO_F SAM_D I_niño3_FMA	I_Sn_EuA_E I_Sn_NH_May o DMI_D EA_FM TNA_JJ I_niño3_FMA	L_MEL_N L_Sn_NH_ Mayo L_MEL_May o EA_FM DMI_D	DMLD TNA_FM L_MEL_May o L_NAO_FM EA_FM TNA_JJ L_niño3_F MA L_WP_F	L_EAWR_N A Sn_EuA_E DMI_D L_NAO_F L_MEI_MJ TNA_JJ L_niño3_FM A L_SCAND_F MA
OND	L_EA_FMAM J PDO_EF L_niño_3_DE FMA DMI_AMJ TNA_DE I_SOI_FMA	AAO_D I_AAO_EF MA Q300_J I_MEI_DEF MAM I_TASI_MA I_TASI_MA IZTASI_MA DMI_DE DMI_AMJJ	L_AAO_EFM A L_EA_MAMJ AAO_D Q300_J L_MEI_DEFM AM L_TASI_Marz o L_Sn_EuA_Ju n	I_EA_MAM J EAWR_E EA_F DMI_EF TSA_F EAWR_M AMJ	EAWR_E DMI_D TSA_F EAWR_MA MJ	SEIO_J I_niño3_FMA SAM_DE I_TASI_FM	TNA_MA SAM_MAM I_TASI_FM I_NAO_F I_niño3_FMA	I_Sn_EuA_E DMI_D EA_FM EA/WR_MAMJ TNA_JJ I_niño3_FMA	I_MEL_May o EA_FM TNA_JJ DMI_D I_niño3_F MA EA_JA	DMI_D TNA_FM I_MEI_May EA_FM TNA_JJ EA_JA I_niño3_F MA I_WP_F	L_EAWWR_N A Sn_EuA_E DMI_D L_NAO_F L_MEI_MJ TNA_JJ EA_JA L_NIñ03_FN A L_SCAND_I MA

ND)]	LAAO_S	I_AAO_S	I_AAO_EFM	I_EA_MAM	I_AAO_S	SEIO_J	TNA_MA	I_Sn_EuA_E	I_MEI_May	DMI_E	I_EA	WR_M
		LEA_FMAM	I_AAO_EF		J Eanne e	EA/WR_E	I_niño3_FMA	SAM_MAM	EA_FM	O FA FM	TNA_FM	A Sn	
		J	IVIA			TSA_F	I_AAO_S	I_TASI_FM	EA/WR_MAMJ		I_MEI_May	51_	LUA_L
		L_niño_3_DE	I_EA_AMJJ	DMI_AMJJA	EA_F	I SAM AM.LI	SAM MA	I NAO F	TNA .LI	TNA_JJ	0	I_ME	EI_MJ
			i_SAM_JJA	I_Sn_EuA_Ju	DMI_EF					l_niño3_F	TNA_JJ	TNA	_JJ
		DMI_AMJJ	S	n	TSA F	EA/WR_MA MJ	I_TASI_FM	I_nino3_FMA	I_nino3_FMA	MA	EA JA	EA	JA
		LSOI_FMA	Sn_EuA-A			-				EA_JA		–	
			I_SN_HN_		AMJ						MA	Α	103_1111
			EF		I SAM AM						I WP F	I SC	CAND F
			DMI_AMJ		J							MA	
DJ	F	LAAO_S	I_AAO_S	I_EA_MAMJ	I_EA_MAM	I_AAO_S	SEIO_J	TNA_MA	EA_FM	I_MEI_May	EA_JA	I_EA	WR_M
	I	LEA_FMAM	I_EA_AMJJ	I_AAO_EF	J	TSA_F	I_niño3_FMA	SAM_MAM	EA/WR_MAMJ	0	I_niño3_F	AIVI	
		J	i SAM JJA	I EA AMJ	TSA_F	I SAM AM	I AAO S	I TASI FM	TNA JJ	TNA_JJ	MA	EA_	JA
		L_niño_3_DE	s		EA/WR_M	=	SAM MA	L niño3 FMA	– L niño3 EMA	I_niño3_F	I_WP_FM	I_SC	CAND_F
		FIVIAIVI	Sn_EuA-		AIVIJ	MJ	C/			IVIA	I_SOI_AMJ	IVIA	
		DMI_AMJJ	AS	I_Sn_EuA_Ju n	I_SAM_AM	i sam amjj	I_TASI_FM			EA_JA		I_SC	DI_AMJ
		LSOI_FMA	DMI_AMJ		~								
										1			

Table 3. Predictors selected for the different areas and seasons.

2.4 Running the model

The model will use multiple linear regression (MLR), as described in Wilks (2006), over every grid point, using the set of predictors selected for that specific region of study. Trend is removed before calculating regression and then added to regression results. In order to express the forecast in probabilistic terms, first, terciles are calculated for predictands at every grid point. Then, probabilities are assigned to every tercile, using a normal distribution, centred in the deterministic output of the MLR and using information from residuals to adjust its width. This distribution represents the expected probability density function (pdf) for the forecasted predictand value. The computation of the area below this curve and between observed terciles provides the probability of the forecasted value to be in every one of them (Eden et al. (2015)).

This procedure requires predictands to adjust to a normal distribution. As this is not the case with precipitation, square root is previously applied over this predictand, to transform it into a normal-like distribution (Pasqui et al. (2007)). Besides, every time it runs, the system performs a series of checks to ensure assumptions required to run this type of models are true, among them: no collinearity among predictors, no overfitting, and residuals to be distributed in a way they have normal distribution, don't experience autocorrelation and are homoscedastic.

2.5 Verification of results

The first step on analysing how the empirical model is performing against dynamical models resides in the verification of model forecasts. For this purpose, a hindcast for the period 1983-2014 is calculated. Regression is trained for same period, using *"Leave-One-Out"* technique (Wilks (2006)), excluding a total of five years from the series (two before and two after the year we are forecasting), to avoid autocorrelation. In section 3.3 several verification indices are calculated for this version of the empirical system, comparing values of the same indices calculated from dynamical models.

3. Results.

3.1 Precipitation forecast.

Figure 2 shows a few examples of forecasts maps for precipitation. Although some noise can still be seen over certain areas, observed patterns are synoptic scale and continuous, generally speaking. Borders are not evident, either, so forecast maps are reasonably shaped, and defined subregions and proposed constraints for predictors seem to work well. This example was for 2018 JAS, and anomaly patterns resemble in terms of structures and spatial variability what dynamical models proposed for that same season.

Figure 2: Example of precipitation forecasts. Probability for the most likely tercile is shown at every grid point. Green (orange) corresponds to upper (lower) tercile.

3.2 Temperature forecast.

In order to compare results, the empirical model is also run using temperature as predictand and the same predictors as for precipitation, under the assumption that same anomalous circulation captured by these predictors can affect to temperature as well. Results can be seen in Fig. 3. The same conclusions about the forecasts appearance also applies for temperature.

Figure 3: Example of temperature forecasts. Probability for the most likely tercile is shown at every grid point. Red (blue) corresponds to upper (lower) tercile.

3.3 Verification.

To compare the skill of this first version of the empirical model against state of the art dynamical models is necessary to select a period where hindcast data is available for all of them, to ensure differences in scores can't be explained by changes in predictability over the years. So, although hindcast is available for a longer period, skill is evaluated for period 1997-2009, using several verification indices: Ranked Probability Skill Score (RPSS) for terciles, Relative Operating Characteristic (ROC) and Brier Skill Score (BSS) for two events, as well as linear correlation for the deterministic output of MLR. Detailed definition of these scores can be found in Wilks (2006). Table 4 shows scores for several areas, as an example. Results from the empirical system are compared to the main dynamical models for seasonal forecasting at the time the system began to being developed: ECMWF system 4, Météo-France system 5, Met-Office system 9 (GloSea5), National Center for Environmental Prediction (NCEP) system version 2, Canadian Seasonal to Inter-annual Prediction System (CanSIPS) and Japanese Seasonal Forecasting System 2.

Generally speaking, dynamical models show lower skill over the western part of the domain, and the empirical system seems to have better skill over some of those areas. For example over France empirical system shows very good results, better in average than dynamical models for precipitation, and at the same level for temperature. Over the eastern part of the domain, dynamical models tend to show better scores, although there are still some seasons where they show lower skill and empirical system seems to perform better.

Differences in scores among areas and seasons are better seen over spatial maps: Figures 4 and 5 show correlation coefficient maps for precipitation and temperature. Certain areas show very good correlation with observations, whereas others hardly show any. These maps show the potential of the model and at the same time, the big spatial differences in the correlation maps point out that there is room for improvement in the selection of predictors over many areas.

Medscope Milestone M2.3

Table 4a. Verification scores for precipitation and for temperature, for France (41N-52N,6.4W-10E). Average of Roc area, Brier Skill Score, Ranked Probability Skill Score and Correlation for the area, calculated for 1997-2009 period. Every column stands for a different season. Every row stands for a different model. Upper row correspond to empirical system.

Results for precipitation are significantly better than average for models for the majority of months. For temperature, scores are on pair or slightly below values from the rest of models.

Area: IBERIA Lead-Time: 1 Detrend FALSE / Weighted TRUE Area: IBERIA Lead-Time: 1 Detrend FALSE / Weighted TRUE

0.55 0.56 0.43 0.43 0.6* 0.63* 0.61# 0.49 0.53 0.61# 0.56 .48 0.49 0.55 0.44 0.61 0.53 0.52 0.47 0.67# 0.55 0.64 0.54 Can 0.51 0.56 0.57 0.51 0.47 0.62* 0.6 CFSv2 0.64 0.64* 0.56 0.42 0.45 0.61# 0.57 0.6 0.52 0.53 0.51 0.57 0.5 0.56 0.59 0.61* 0.65* 0.61 л .49 0.43 0.49 <mark>0.64*</mark> 0.55 MES 0.63* 0.67 0.59 0.58 0.49 0.52 0.49 0.53 0.64* 0.52 0.51 FMA MAM AMJ MJJ JJA JAS ASO SON TRIMESTER OND NDJ DJF

ns: GPCC_v7 1997-2009

GPCC_v7 1997-2009

-0.01 0.03

0.04 0.02

JFM FMA MAM AMJ MJJ JJA JAS ASO SON TRIMESTER

Observations: GPCC_v7 1997-2009

* p-val <= 0.05 # 0.05 < p-val <= 0.10 (nBo

-0.06 <mark>0.13#</mark>

RPSS3 - PRECIPITATION RATE

0.6 0.7 0.8 RocArea_Iower - PRECIPITATION RATE * p-val <= 0.05 < p-val <= 0.10 (nBootstrapping = 100/n)

JJA JAS TRIMESTER JFM FMA MAM AMJ MJJ OND NDJ DJF ns: GPCC v7 1997-2009

BSS_upper - PRECIPITATION RATE * p-val <= 0.05 # 0.05 < p-val <= 0.10 (nBootstrapping = 1000) BSS_lower - PRECIPITATION RATE * p-val <= 0.05 # 0.05 < p-val <= 0.10 (nBootstrapping = 1000) Area: IBERIA Lead-Time: 1 Detrend FALSE / Weighted TRUE

FORECAST SYSTEM

0.03

0.04

OND NDJ DJF

0.01

0.05

0.05

0.03 0.02

0.09 0.06

0.02

FORECAST SYSTEM

Area: IBERIA Lead-Time: 1 Detrend FALSE / Weighted TRUE

ns: GPCC v7 1997-2009

0.2 04 -1 0.2 0.4 0.5 Corr - PRECIPITATION RATE * p-val <= 0.05 # 0.05 < p-val <= 0.10 (nBootstrapping = 100 000)

Medscope Milestone M2.3

AEMET1-S1

FORECAST SYSTEM

Car

CFSv2

JMA2

MFS

Table 4b. The same as table 4a, but for Iberia (32.5N-47.5N, 10W-7.5E)

Results for precipitation and temperature present similar values to dynamical models. Scores for spring have the lowest values.

MAM AMJ MJJ JUA SON OND NDJ DJF

TRIMESTER

RPSS3 - PRECIPITATION RATE

-2009

мам

TRIMESTER 009

Corr - PRECIPITATION RATE

Results for precipitation present similar or slightly better values compared to dynamical models. For temperature, skill seems lower than that of dynamical models, except for autumn/early winter.

Table 4d. The same as table 4a, but for Balkans (34.5N-48.5N,13E-29E)

Results for precipitation present similar values compared to dynamical models. Late summer/early autumn has the highest skill. For temperature, skill seems clearly lower than that of dynamical models in late winter and spring, and higher from late summer to early winter.

Table 4e. The same as table 4a, but for Morocco (21N-36N,17W-1W)

Results for precipitation and temperature present similar values and seasonal distribution of skill as that showed by dynamical models.

Table 4f. The same as table 4a, but for East Mediterranean (20 N-40N, 27.5 E-62.5 E). Results for precipitation show slightly lower skill than dynamical models. Results for temperature present similar values for skill as that showed by dynamical models.

Figure 4: Linear correlation between model forecast and observed precipitation for September-November and March-May, for 1983-2014 period.

Figure 4 represent the spatial (and season-dependant) differences of skill over the domain. There is still work to do in the exploration of predictors to try to reduce the areas of low skill.

4. Conclusions

Major research and climate services initiatives support advances in seasonal forecasting. In the frame of MEDSCOPE project, we present here a first version of a seasonal forecast empirical system that uses new predictors based on a collection of targeted sensitivity experiments. As these experiments are still ongoing, the purpose of this first version is just to develop a system capable of producing coherent seasonal forecasts. We believe that the proposed system is valuable as a starting point, so that when the results of next experiments are available; their implementation will be rather straightforward. Bearing this in mind, the code has been designed in such a way to facilitate both either modification or incorporation of new predictors.

As indicated earlier, the nature and appearance of spatial patterns observed on the forecasts seems to fulfil the original aim of producing both synoptic scale structures and continuity among regions. Furthermore, when comparing verification scores from the empirical system with six state-of-the-art dynamical models, the empirical system shows higher skill over some regions for precipitation while comparable results for temperature. Nevertheless, as regards other regions, skill is poor and comparable or below dynamical models. Plausible causes for this result may be attributed to the fact that selection of predictors was made subjectively and only for precipitation, whereas the model uses its square root. Another possible cause related with the procedure for selection of predictors could be that it checks the percentage of points showing some signal within a region, but does not take into account where that signal is: it may be possible that all predictors show signal over the same part of the region, and at the same time, it may not exist any good predictor for other parts. Next version of the system will implement an automatic procedure for selection of predictors, and efforts will focus on developing an objective procedure that cover the issues above described.

On the other hand, the fact that selected predictors for temperature are the same than for precipitation is a serious limitation of the empirical model. We expect better results when making an independent selection of proper predictors for this predictand. Nevertheless, present results are encouraging, with scores being roughly at the same level as for dynamical models. In any case, using the same predictors for temperature and precipitation makes easier to analyse circulation anomalies for the incoming season and its physical interpretation.

Therefore, this first version of the model shows encouraging results and at least similar skill as dynamical models. Improvements currently being developed in the empirical system and the expected new specific predictors from MEDSCOPE will be implemented in the next version of the system. The new version is expected to be an additional and reliable source of information to be used in combination with dynamical models and aiming at improving the skill of seasonal forecasts over the Mediterranean region.

References

- Breusch, T. S., Testing for Autocorrelation in Dynamic Linear Models. Australian. Economic Papers 17 (31), 334–355, 1978. URL <u>http://dx.doi.org/10.1111/j.1467-8454.1978.tb00635.x</u>.
- Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P. Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C., Van De Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J., Park, B., Peubey, C., De Rosnay, P., Tavolato, C., Thépaut, J., and Vitart, F. The ERA-Interim reanalysis: configuration and performance of the data assimilation system Q.J.R. Meteorol. Soc., 137: 553-597, 2011. doi:<u>http://dx.doi.org/10.1002/qi.828</u>
- Eden, J. M., van Oldenborgh, G. J., Hawkins, E., and Suckling, E. B.: A global empirical system for probabilistic seasonal climate prediction, Geosci. Model Dev., 8, 3947-3973, 2015. <u>https://doi.org/10.5194/gmd-8-3947-2015</u>
- Godfrey, G., Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables, Econometrica 46, (6) 1293-1301, 1978. https://www.jstor.org/stable/1913829
- Pasqui, M., Genesio L., Crisci., Primicerio, J., Benedetti, R., Maracchi, G. An adaptive multiregressive method for summer seasonal forecast in the Mediterranean area. 87th AMS, 13-16 January 2007.
- Sánchez García, E., Voces Aboy, J., Rodríguez Camino, E. Verification of six operational seasonal forecast systems over Europe and Northern Africa. Technical note, AEMET, 2018. Available at http://medcof.aemet.es/index.php/models-skill-over-mediterranean.

- Schneider, U., Ziese, M., Meyer-Christoffer, A., Finger, P., Rustemeier, E., and Becker, A. The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources, Proc. IAHS, 374, 29-34, 2017 https://doi.org/10.5194/piahs-374-29-2016.
- Wang,L., Ting,M., Kushner, P.J.. A robust empirical seasonal prediction of winter NAO and surface climate, Nature, 2017. https://doi.org/10.1038/s41598-017-00353-y
- Wilks, D. Statistical Methods in the Atmospheric Sciences. Academic Press, London, 2006.

Tables and Figures

