

(GRANT AGREEMENT 689029)

European Climate Observations, Monitoring and Services initiative (2)

Deliverable D3.2

[Toolbox]

Deliverable Title	D3.2 - 1001007	x of R/python available	1
WP number	3		
Lead Beneficiary	Louis-Philippe Caron, Barcelona		1
	Supercomputing Center		
	Nuria Perez-Zanon, BSC		
	Filippo Cali Quaglia, ISAC-CNR		
	Carmen Alvarez-Castro, CMCC		
	Nicola Cortesi, BSC		
	Susanna Corti, ISAC-CNR		
	Federico Fabiano, ISAC-CNR		
	Ignazio Giuntoli, ISAC-CNR		
Contributors		enberg, ISAC-CNR	
	Llorenç LLedo, BSC		
	Nicolau Manubens, BSC Eroteida Sanchez-Garcia, AEMET		
	Bert van Schaeybroeck, RMI		
	Silvia Terzago, ISAC-CNR		
	Veronica Torralba, BSC		
	Deborah Verfaillie, BSC		
	, , , , , , , , , , , , , , , , , , ,		
Deliverable Due		†	
Date	15/03/2020		
Nature of the		R – Report	
Deliverable		, ·	
	SP	SP - Software Package	
		D - Demonstrator	
		O - Other	
Version	Date	Modified by	Comments
1.0	01/07/2020	Louis-Philippe Caron	First version
1.1	02/07/2020	Núria Pérez-Zanón	Modified
1.2	27/04/2021	Núria Pérez-Zanón	Modified

TABLE OF CONTENTS

1. Overview of the CSTools Package	4
2. Installation.	4

1. Overview of the CSTools Package

The toolbox developed in MEDSCOPE provides tools to exploit dynamical seasonal forecasts in order to provide information relevant to stakeholders. Although the tools are primarily thought/designed for seasonal forecasts, they can also be used for sub-seasonal or decadal forecasts. Written in the open source programming language *R*, **CSTools** is now publicly available on the **CRAN repository**. The package contains approximately 50 functions, which can be divided in five broad categories: downscaling, verification, correction, plotting and basic functions.

Basic Functions

- 1. **CST_Load** retrieves and aggregates forecast data from local file systems or from remote OPeNDAP servers and arranges it in a CSTools object. Can interpolate if necessary.
- 2. **CST_Anomaly** computes anomalies relative to a climatology along selected dimension with or without cross-validation
- 3. **CST_SaveExp** save CSTools objects of class 's2dv_cube' containing experiment data in NetCDF format. Useful to save data that have been post-processed with CSTools functions.
- 4. **CST_SplitDims** splits a dimension in two.
- 5. s2dv_cube this function creates a 's2dv_cube' object
- 6. **as.s2dv_cube** converts data loaded using start*R* package or s2dverification load function into a's2dv_cube' object.
- 7. **CST MergeDims** merges two dimensions into one.

Downscaling

- 1. **CST_Analogs** performs a downscaling using Analogs.
- 2. **CST_RainFARM** stochastic precipitation downscaling function based on the RainFarm methodology.
- CST_RFSlope computes spatial spectral slopes from a CSTools object to be used for RainFARM.
- 4. **CST_RFWeights** computes climatological weights for RainFARM stochastic precipitation downscaling.
- 5. **CST_RFTemp** downscales surface temperature using lapse-rate or a delta-bias correction compared to fine-scale climatology.
- 6. **CST_AdamontAnalogs** finds analogous data in the reference dataset to experiment data based on weather types

- CST_AdamontQQCorr computes quantile-quantile correction of forecast data considering weather types
- 8. **CST_AnalogsPredictors** AEMET Downscaling method for Precipitation and maximum and minimum temperature based on analogs and considering synoptic situations and significant predictors.

Verification

- 1. **CST MultivarRMSE** calculates the RMSE from multiple variables.
- 2. **CST_MultiMetric** calculates anomaly correlation coefficient, root mean square error, or the root mean square error skill score of individual models and multi-models mean.
- 3. **CST_MultiEOF** performs EOF analysis over multiple variables.
- CST_EnsClustering performs clustering on members/start dates and returns a number of scenarios, with representative members for each of them.

Correction

- 1. CST_BiasCorrection applies a simple bias adjustment technique
- 2. **CST_Calibration** applies four types of member-by-member bias correction. 3.
- **CST_QuantileMapping** provides a quantile mapping adjustment between a hindcast and observation.
- CST_BEI_Weighting computes the normalized weights for each member of the forecast using the probability density functions.
- 5. **BEI_PDFBest** computes a probability density function from two probability density functions.
- 6. **CST_CategoricalEnsCombination** converts a multi-model ensemble forecast into a categorical forecast by giving the probability for each category.
- 7. **CST_WeatherRegimes** computes the weather regimes from a cluster analysis.
- 8. **CST_RegimesAssign** performs the matching between a field of anomalies and a set of maps used as a reference.

Plotting

- 1. PlotMostLikelyQuantileMap plot maps of most likely quantiles.
- 2. **PlotForecastPDF** plots the probability distribution function of several ensemble forecasts. 3. **PlotCombinedMap** plots multiple variables in a single map with the cylindrical equidistant latitude and longitude projection.
- 4. PlotTriangles4Categories converts any 3-d numerical array to a grid of coloured

triangles. 5. **PlotPDFsOLE** - plots two probability density gaussian functions and their optimal linear combination.

The package also includes the description of each individual function through the typical *R* documentation. An overview of the package is also available in a poster format here. Guidelines on how to use the software and how to analyze climate data are also provided in the shape of vignettes, instructive tutorials demonstrating practical uses of the software with the discussion of the interpretation of the results. There are currently 10 vignettes:

- Downscaling precipitation with RainFARM
- Downscaling with **Analogs**
- Evaluate_multi-model scores
- Multi variable RMSE computation
- Weather Regimes
- Ensemble Clustering
- Plotting with Plotting with PlotForecastPDF
- Obtaining the **Best Estimate Index**
- Compute and visualize **Most Likely Terciles**
- Data Storage and Retrieval considerations

2. Installation

The publicly released version of CSTools can be installed from CRAN by simply typing the following in an R session:

> install.packages("CSTools")

and can be used by simply loading the package as follow:

> library(CSTools)