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1. Executive Summary

Despite the wealth of existing climate forecast data, only a small part is effectively exploited for

sectoral applications. A major cause of this is the lack of integrated tools that allow the translation

of data into useful and skilled climate information. This barrier is addressed through the

development of an R package. CSTools is an easy-to-use toolbox designed and built to assess and

improve the quality of climate forecasts for seasonal to multi–annual scales. The package contains

process-based state-of-the-art methods for forecast calibration, bias correction, statistical and

stochastic downscaling, optimal forecast combination and multivariate verification, as well as basic

and advanced tools to obtain tailored products. Thanks to the toolbox design in individual

functions, the users can develop their own post-processing chain as shown in the use cases

presented in this deliverable: the analysis of the extreme wind speed event occurred in March

2018, the SNOWPACK model and the SCHEME hydrological model.
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2. CSTools toolbox

Within MEDSCOPE Work Package 3, the R toolbox CSTools was developed and served as
Deliverable D3.1. This toolbox exploits dynamical seasonal forecasts in order to provide
information relevant to stakeholders at the seasonal timescale. The package contains
process-based methods for forecast calibration, bias correction, statistical and stochastic
downscaling, optimal forecast combination and multivariate verification, as well as basic and
advanced tools to obtain tailored products

In order to enhance the stakeholder accessibility of the toolbox, video tutorials, extensive
documentation and practical examples have been made available online. After an overview of the
methods in section 3, we show in detail how the tools provided in CSTools can be used for
scientifically-advanced impact modeling in section 4. More specifically CSTools is used to prepare
optimized forecast data to be used to analyse an extreme-wind event, as input for a snow model
(SNOWPACK; Lehning et al., 2002a,b) and for a hydrological model (SCHEME; Baguis et al., 2010).
In order to enhance reproducibility for different use cases, the structural methodology of data
handling is emphasized and explained in detail.
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3. Introduction: from climate data to climate
information

There are different forecast post-processing steps essential to arrive at climate information. These

are provided within CSTools and visualized in Figure 1.

● Data retrieval and formatting: Optimal methods for spatial and temporal data

manipulation, such as interpolation methods, are needed given the existing wide range of

climate data formats. This can be a critical step when trying to combine multiple datasets

such as observations and forecasts.

● Forecast calibration and multi-model forecast combination or scenario selection. Calibration

is necessary to correct systematic errors of the Earth system models (ESM) and to uncover

any predictive signal. These biases mostly originate from the crude representation of the

climate dynamics within ESMs (Marcos, 2016; Van Schaeybroeck and Vannitsem, 2018;

Manzanas et al., 2019). In addition, combining multiple forecasting systems allows to

substantially enlarge the diversity of potential weather situations (Hemri et al., 2020). As a

consequence, errors are partially compensated and there is an increase in consistency and

reliability (Hagedorn et al., 2005). Scenario selection, on the other hand, may often be

useful for communication and information synthesis for specific applications (Ferranti &

Corti, 2011).

● Downscaling: Climate forecast systems, due to computational limitations, provide global

seasonal-to-decadal forecasts at a horizontal resolution of typically 100 km. Users,

however, require local information and (statistical) downscaling is commonly used to

perform realistic transformations from large to small scales (Maraun & Widmann, 2018,

Ramon et al. 2021).

● Skill assessment: Estimating the quality of the predictions is essential for both improving

the current forecast systems and providing useful forecast products tailored to several

sectors (Merryfield et al., 2020). The skill estimates should be provided together with the

forecast products to allow a correct interpretation of the forecasts. Also, the skill can be

measured with respect to a classical forecast (such as the observed climatology or the

persistence) to assess the added value of the predictions.

● Visualization: Users prefer to have a wide range of tools for easily-adaptable visualization,

mostly using geographical maps.
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Figure 1. Scheme of the flexible CSTools workflow (from top to bottom). Each box represents a

category of functions that are part of CSTools.

Software packages have already been created to analyze different types of climate data. For

instance, the Earth System Model Validation Tool (ESMValTool; Eyring et al., 2016a; Righi et al.

2020) was designed to handle climate projections to facilitate the analysis in the Coupled Model

Intercomparison Project (CMIP; Eyring et al., 2016b). The R packages s2dverification (Manubens et

al., 2018), specsVerification (Sieger, 2017) and easyVerification (MeteoSwiss, 2017) focus on skill

assessment of ensemble forecast. The main purpose of these packages is the facilitation of

research. CSTools, on the other hand, could be used by both expert climate scientists and end

users but its aim is to provide an end result to the final user. Notwithstanding, CSTools profits from

and is made compatible with already existing tools.

CSTools also differs from other existing Climate-Services tools concerning target users and

objectives. That is the case of the U.S. Climate Resilience Toolkit (https://toolkit.climate.gov/tools)

which gathers online visualization of specific climate impact indicators. Their target users are

different, since CSTools users need may be able to run a create code by themselves. There is the

possibility to create a use case for the U.S. Climate Resilience Toolkit using CSTools methods. The

Senses Toolkit (https://climatescenarios.org/) is a collection of user-centered scenario visualization
8
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tools whose users are climate policymakers, regional climate scenario users and businesses,

particularly those with long-term planning horizons. APEC Climate Center (APCC) developed

several tools for climate information provision, production and processing. The Climate

Information Toolkit (CLIK), to produce customized multi-model ensemble forecast and

station-based downscaling forecast information through various climate model ensemble

combinations, is an online tool that allows choosing different settings and visualization options but

with rather low flexibility and transparency for the user.

9
Medscope (ERA4CS G.A. 689029) Deliverable D3.1

http://clik.apcc21.org


4. Use cases

The reasons for post-processing seasonal forecasts are: adjust systematic model errors which are

part of the simulation uncertainty and increase the spatial resolution depending on the user

needs. The methods to be applied depend on the final application of the post-processed data and

the target region. The following subsections show the full procedure to post-process three datasets

using CSTools. The first case post-processes and assesses wind speed seasonal forecast in March

2018, when high-speed winds were observed in the Iberian Peninsula, by using only CSTools

functions. In the second case, the precipitation seasonal forecast for a hindcast period is

post-processed following the SNOWPACK model requirements. Finally, post-processing of rainfall

and temperature seasonal forecasts is outlined prior to its input for the SCHEME hydrological

model.

4.1 Bias adjustment of wind speed forecasts for assessing an

extreme event

This section exemplifies the computations required to analyze a target event using seasonal

forecasts initialized 3, 2 or 1 month(s) in advance. The code could be adapted to other regions,

time periods and variables. The user will need, apart from the data, to correctly modify the

parameters. To do so, a detailed description of the code is included below after the impact of the

event.

In the case shown here, high wind speed values were recorded in the Iberian Peninsula during

March 2018. This analysis can be of interest to the energy sector, given the impacts it had on wind

power generation, energy demand and electricity prices. The renewable energy production in 2018

in the Spanish peninsular system grew by 18.5% compared to the previous year, mainly due to the

contributions of wind and hydro power in the month of March 2018, when the renewable

generation was 51.1% higher than that of the same month of the previous year. A historical

maximum of monthly renewable generation was hit with 13,204 GWh (33.1% of share), of which

wind energy contributed 7,676 GWh, setting also a new record of monthly wind generation (Red

Eléctrica España, 2018). These high amounts of renewable generation in March 2018 resulted in an

important drop of the electricity prices: the cost for final consumers was € 0.0418 / kWh compared

to € 0.05488 / kWh in February 2018
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(https://www.sernoven.com/blog/2018/04/11/precio-de-la-electricidad-2/). Given its relevance to

the Spanish economy, this information appeared in the press (e.g.

https://www.elperiodico.com/es/economia/20180311/precio-electricidad-luz-borrasca-felix-66818

07). Furthermore, the Spanish Meteorological Agency activated its protocol of early warning

system on 47 regions of Spain due to the high-speed winds forecasted and its coastal impact

(https://www.elperiodico.com/es/tiempo/20180311/felix-pone-en-riesgo-a-47-provincias-por-vien

tos-que-podran-alcanzar-los-140-km-h-668171). In sum, the procedure outlined in this section may

be relevant for climate services that are based on seasonal forecasting of  high-wind events.

Here, the seasonal forecasts initialized in December 2017, January 2018 and February 2018 are

bias adjusted and assessed. Two functions from CSTools are used to post-process the wind speed

seasonal forecasts: CST_Load and CST_BiasCorrection. The key decisions are the parameters to

retrieve the data from files to achieve a coherent analysis of the March 2018 event (Figure 1). The

analysis is repeated for three different start dates (i.e. December, January and February). For each

start date, three different data types are loaded: the hindcast, i.e. retrospective forecasts initialized

in the past for start dates since 1993; the observational reference, covering the same period as the

hindcast; and the operational forecast, i.e. the latest simulations initialized just before the event

(i.e. December 2017, January 2018 and February 2018). In all the data loading calls, the same

region must be requested through the parameters lonmin, lonmax, latmin and latmax of the

function CST_Load, in which the output type required is gridded data rather than area average by

setting output parameter as ‘lonlat’.
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Figure 2: Scheme of the methodology applied. Grey boxes indicate the data, methods and results.

The required parameters to analyze the March 2018 event are specified for the simulations

initialized one, two and three month(s) in advance on white background.

For the hindcasts and the forecasts we use monthly means of 10 m wind speed from the ECMWF

SEAS5 system, obtained from C3S (SEAS5) at 1 degree spatial resolution. For the observational

reference, on the other hand, we use monthly-mean 100 m wind speeds from the ERA5 reanalysis

(Hersbach et al., 2020) at 0.25° (around 30 km) spatial resolution. Winds at 100 m height are of

relevance for energy applications and, although this variable is not available for the seasonal

prediction system, the bias adjustment procedure will convert 10 m to 100 m winds similar to the

standard conversion assuming a logarithmic wind profile (Drechsel et al., 2012). The different

variable names must be specified in the CST_Load call through the parameter var, since the

function needs to read the correct variable written on the NetCDF files in the data storage.

Therefore, the var parameter is set to ‘sfcWind’ when retrieving hindcasts and forecasts, while for

the reference dataset it is set to ‘windagl100’. Given the difference in spatial resolution, a

regridding of the reference dataset is also requested by the parameter grid. The path pointing to

the simulations and the reference are also passed to the CST_Load function through parameters

‘exp’ and ‘obs’, respectively. Notice that the labels $STORE_FREQ$, $VAR_NAME$, $START_DATE$,

$YEAR$ and $MONTH$ are used when defining the paths. These labels will be interpreted and

substituted by the function following the information provided in the other parameters of

CST_Load.

An index ‘mm’ indicating the number of preceding months (mm) is introduced to loop over the

three start dates in order to simplify the code. When mm is 1, the bias adjustment for one month

in advance, i.e. the February start date, is computed. The target year is set in the ‘year’ variable as

2018 and the start dates of the simulations to be loaded are created and stored in the

‘hcst_sdates’ and ‘fcst_sdates’ variables, which correspond to a vector of dates for the 1st of

February from 1993 to 2017 and the 1st of February 2018, respectively. For the February start

date, the lead time two (i.e. mm + 1) corresponds to the forecast for March which is selected

through the leadtimemin and leadtimemax parameters.

Finally, a simple bias-correction method is used to compute the biases between the hindcast and

the reference datasets and then apply a correction to the forecast dataset by CST_BiasCorrection.

The results of each loop are stored in a list.

12
Medscope (ERA4CS G.A. 689029) Deliverable D3.1



library(CSTools)

exp_path <- list(name = "ECMWFS5",

path =

"/esarchive/exp/ecmwf/system5c3s/$STORE_FREQ$_mean/$VAR_NAME$_f6h/$VAR_NAME$_$

START_DATE$.nc")

obs_path <- list(name = "ERA5",

path =

"/esarchive/recon/ecmwf/era5/$STORE_FREQ$_mean/$VAR_NAME$_f1h/$VAR_NAME$_$YEAR

$$MONTH$.nc")

# Target months March (3)

# Assess forecast from 1 to 3 months in advance

months_in_advance <- c('02', '01', '12')

for (mm in 1:3) {

# Generate the start dates of hindcast period

year <- ifelse(mm == 3, 2017, 2018)

hcst_sdates <- paste0(1993:(year - 1), months_in_advance[mm], '01')

# Load hincast data

wind_hcst <- CST_Load(var = 'sfcWind', exp = list(exp_path),

sdates = hcst_sdates, nmember = 25,

leadtimemin = mm + 1, leadtimemax = mm + 1,

storefreq = "monthly", sampleperiod = 1,

latmin = 36, latmax = 44, lonmin = -10, lonmax = 4,

output = 'lonlat')

# Generate the start dates of forecast period

fcst_sdates <- paste0(year, months_in_advance[mm], '01')

# Load forecast data

wind_fcst <- CST_Load(var = 'sfcWind', exp = list(exp_path),

sdates = fcst_sdates, nmember = 25,

leadtimemin = mm + 1, leadtimemax = mm + 1,

storefreq = "monthly", sampleperiod = 1,

latmin = 36, latmax = 44, lonmin = -10, lonmax = 4,

output = 'lonlat')

# Load reference data

wind_ref <- CST_Load(var = 'windagl100', obs = list(obs_path),

sdates = hcst_sdates, nmember = 1,

leadtimemin = mm + 1, leadtimemax = mm + 1,

storefreq = "monthly", sampleperiod = 1,
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latmin = 36, latmax = 44, lonmin = -10, lonmax = 4,

output = 'lonlat',

grid = 'r360x181')

# Bias Adjustment

wind_fsct <- CST_BiasCorrection(exp = wind_hcst,

obs = wind_ref,

exp_cor = wind_fcst)

wind_fsct_BC[[mm]] <- wind_fsct

}

Once the wind forecasts are post-processed, additional CSTools functions can be used to visualize

the forecast distributions. The PlotForecastPDF function, for instance, compares the probability

distribution function of the March 2018 100 m wind speed forecasts issued 1, 2 and 3 month(s) in

advance (Figure 3). Three months in advance, only one member exceeds the P90. The simulations

initialized one and two month(s) in advance suggest a weak shift towards above-normal conditions

(~40% probability of the above normal tercile) and towards extreme high values (12% and 17%

exceeding P90). Moreover, the forecast’s tercile probabilities do not indicate a shift towards

above-normal winds as lead time decreases (the January start date suggests a slightly larger

probability of above-normal winds than the February start date). Even though for start dates in

both January and February three members exceed P90, the corresponding probabilities are

different due to the ensemble dressing applied. In February, the probability of observing extreme

wind conditions was almost twice the one in January. Individual ensemble members typically also

suggest much weaker wind speed anomalies than observed, except for one member in the

February initialization, indicating that in this case the prediction system anticipated this situation

as a potential outcome.
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Figure 3: Seasonal forecasts of wind speed at 100 m height, averaged over 10ºW-4ºE and 36-44ºN

for March 2018. Each panel corresponds to forecasts launched 3 to 1 month(s) ahead (from left to

right). Methodology: simple bias correction with ERA5 observations, based on previous hindcasts

since 1993.

The spatial distribution of the tercile probabilities can be displayed with the

PlotMostLikelyQuantileMap function (Figure 4). An extra layer has been included to mark with

crosses the grid points where observations agree on the most likely tercile indicated by the

forecast. Three months in advance, most of the region shows that the tercile of highest probability

is the below-normal category. One and two month(s) in advance, the colors shift towards the

normal and above-normal categories. In the January simulation, the eastern region presents more
15
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above-normal probability of high wind speed values than the western region. In the February

simulation, the above-normal probability class is widespread on the whole Iberian Peninsula.

Figure 4: Probabilities of the most likely tercile for the March 2018 100 m wind speeds, as

indicated by the forecasts  issued 3 to 1 month(s) ahead (top to bottom). The crosses indicate that

the observations fell into the most likely tercile displayed by the forecast. White grid points

indicate that no tercile category has more than 40% of probability.
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Users that can benefit from climate information, such as stakeholders (e.g. energy system

planners), are usually not familiar with the probabilistic forecast and the added value that it can

bring in their planning. In order to become more autonomous in their decision making, a learning

process could be started based on relevant show-case climate events as provided here. Therefore,

this use case could be very interesting for climate services developers that need to post-process a

seasonal forecast variable and present the results in a concise yet user-friendly manner with a

reduced number of  images and tables.

When a unsatisfactory outcome happens because of unfavorable atmospheric conditions, even

including a seasonal forecast in the decision strategy, this code could be used to evaluate whether

the seasonal forecast included the possibility of a unsatisfactory outcome, whether other variables

were better capturing the situation in that case, or if a different bias correction method would

improve the skill of the seasonal forecast. Furthermore, it is possible to extend this code to

compare the results provided by different models.

4.2 Precipitation downscaling using RainFARM for the

SNOWPACK model

A snowpack is an essential water reservoir that is fed by snowfall during the cold season and then

released in late spring and summer. Mountain meltwater is essential for several economic activities

including hydropower generation, agriculture, industry, and meltwater shortage can induce strong

economic losses. Therefore, reliable seasonal forecasts of snow resources that, at the beginning of

the snow season (November) estimate the snow accumulation at the end of spring (April-May), are

highly pursued. These would allow water management authorities and hydropower companies to

implement early water management plans several months ahead of a water-demand peak and

mitigate the effects of a possible water shortage. To support this need we developed a modeling

chain driven by seasonal forecasts of meteorological variables from the C3S seasonal forecasting

systems, employing the physical 1-dimensional snow model SNOWPACK (Bartelt and Lehning,

2002), to estimate snow depth and snow water equivalent at selected high-elevation sites in the

North-Western Italian Alps.

The RainFARM downscaling method incorporated within CSTools is employed to downscale

precipitation and then used as input for the SNOWPACK model. This method allows taking into

account the orographic effects on the precipitation distribution and generates stochastic

realizations for each member of the original seasonal forecast simulations. We generate 10

stochastic downscaled realizations for each ensemble member of the seasonal forecast model. In

the following we present the method applied to the SEAS5 model providing 25 ensemble
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members, so at the end of the downscaling procedure we obtain 250 fine-scale precipitation fields

in total.

Even though several more technical decisions need to be taken by the user, a general scheme could

be followed (Figure 5). Important decisions include the downscaling method, the target region, the

simulation and observation datasets as well as the season to explore. In this case, the region of

interest is the Alpine mountain range in central Europe (42N - 49N, 4E - 11E), within which

high-elevation stations are located used by the SNOWPACK model. Since the RainFARM

downscaling relies on the estimation of the spatial power spectrum of precipitation fields, a

squared domain is required. Moreover this domain has to be larger than the target study area to

avoid artifacts/border effects within the target area. The target season is winter, so the 1st

November start date simulations available for the period 1993-2018 are considered. The

simulations to downscale are daily precipitation data of SEAS5 at 1-degree spatial resolution. The

reference datasets employed are i) ERA5 daily precipitation reanalysis at 0.25° (around 30 km)

spatial resolution (Hersbach et al., 2020) for the bias correction and for the estimation of the

spectral slopes and ii) the WorldClim2 monthly climatology at 1 km spatial resolution (Fick and

Hijmans, 2017) for generating the precipitation weights.

Figure 5: Scheme of the steps that need to be carried out to obtain and save a downscaled

precipitation dataset. These steps are explained in detail.

In the scheme (Figure 5), three steps should be carried out before applying the desired

downscaling with the RainFARM method. In steps 1 and 3 necessary parameters are computed: the
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slopes and the orographic weights; quantile mapping correction is applied to the seasonal forecast

in order to correct the bias of the model in step 2, and the downscaling is computed in step 4.

All computations performed in the first step only require the CSTools package. As mentioned

above, the slope is calculated using ERA5 at its original resolution and over a bigger domain than

the target region (37.5N - 53.25N, 2.5E - 18.25E). The path pattern to the data is defined using

labels: $STORE_FREQ$, $VAR_NAME$, $YEAR$ and $MONTH$. These labels will be interpreted by

CST_Load. For instance, the $VAR_NAME$ will be substituted by the information passed by the

parameter var which in this case is ‘prlr’ that stands for precipitation rate and the $YEAR$ and

$MONTH$ will be interpreted from the CST_Load sdates parameter which requires a vector of

dates in the format ‘YYYYMM01’ where YYYY is the year and MM the month. Then, CST_Load

retrieves the data from files and arranges it with the following dimensions: dataset of length 1

since only ERA5 is being requested, member = 1 since this reanalysis only provides one simulation,

sdate dimension is of length 312 which corresponds to the 26 years of 12 months defined in object

‘years’ with an ftime dimension up to 31 corresponding to each day of the month. Notice that for

the months shorter than 31 days, the data will be filled with missing values ‘NA’. The remaining

dimensions, lat and lon correspond to the squared domain requested in CST_Load. Given that

CST_Load splits the time series among sdates and ftime dimension when specifying a forecast

dataset, our ERA5 path pattern has been requested through this option. On the other hand,

specifying the ERA5 path pattern as an observational dataset (in the obs parameter), the function

will return a continuous time series from 1993 to 2018 which is less convenient for our purposes.

In this example over the Alpine domain, the slope of the spatial power spectrum of ERA5 daily

precipitation at 0.25° is not constant throughout the year but it exhibits temporal variability at the

seasonal scale. In order to account for this, we calculate the spectral slopes at the monthly scale,

fitting wavenumbers 5 and higher in order to better reproduce the slope of the spectrum at the

small scales (see Terzago et al., 2020 for details). The result of this code is the spectral slope from

January to December.

library(CSTools)

era5 <- list(name = 'era5', path =

'/esarchive/recon/ecmwf/era5/$STORE_FREQ$_mean/$VAR_NAME$_f1h-r1440x721cds/$VAR_NA

ME$_$YEAR$$MONTH$.nc')

years <- unlist(lapply(1993:2018, function(x){paste0(x, sprintf("%02d",1:12), '01')}))

era5 <- CST_Load(var = 'prlr', exp = list(era5), sdates = years, nmember = 1,

storefreq = "daily", sampleperiod = 1,

latmin = 37.5, latmax = 53.25, lonmin = 2.5, lonmax = 18.25,
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output = 'lonlat')

era5 <- CST_SplitDim(era5, split_dim = 'sdate', indices = rep(1:12, 26))

slope <- CST_RFSlope(era5, time_dim = c('sdate', 'ftime'), kmin = 5) # using version from

develop-RFSlopeNAs

Code Step 1.

The second step starts loading the data taking advantage of library zeallot (Teetor, 2018) that

allows us to simplify our code by using an advanced version of the assignment operator (%<-%).

Again, the paths to the desired data must be defined using labels: for the forecast data the path

points to the SEAS5 dataset while for the reference data the path points to the ERA5 reanalysis.

Thanks to CST_Load, these datasets could be reshaped to a common grid, which, by default, is the

grid of the first dataset provided, i.e. the SEAS5 grid. The vector ‘StartDates’ which defines the

period of study for November 1st simulations, is then assigned to the sdates parameter.

In order to apply the quantile-mapping correction month by month, the function CST_SplitDim is

used to divide the forecast time dimension in two: one for identifying the days of the month and

another to store each month separately. The result of step 2 is a bias-corrected forecast consistent

with the reference dataset: the forecast probability density function matches the one for the

references resulting in the same climatology. A simple visual evaluation of the impact of the

quantile mapping correction is shown in Figure 6.

library(zeallot)

StartDates <- paste0(1993:2018, '1101')

exp <- list(name = 'ecmwfS5', path =

"/esarchive/exp/ecmwf/system5c3s/$STORE_FREQ$_mean/$VAR_NAME$_s0-24h/$VAR_NAME$_

$START_DATE$.nc")

obs <- list(name = 'era5', path =

'/esarchive/recon/ecmwf/era5/$STORE_FREQ$_mean/$VAR_NAME$_f1h-r1440x721cds/$VAR_NA

ME$_$YEAR$$MONTH$.nc')

c(exp, obs) %<-% CST_Load(var = 'prlr', exp = list(exp), obs = list(obs),

sdates = StartDates, nmember = 25,

storefreq = "daily", sampleperiod = 1,

latmin = 42, latmax = 49, lonmin = 4, lonmax = 11,

output = 'lonlat', nprocs = 1)

exp <- CST_SplitDim(exp, split_dim = 'ftime'))

obs <- CST_SplitDim(obs, split_dim = 'ftime'))

exp.qm_months <- CST_QuantileMapping(exp, obs, method = "QUANT", wet.day = FALSE,
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sample_dims = c('member', 'sdate', 'ftime'))

exp.qm <- CST_MergeDims(exp.qm_months, merge_dims = c("ftime", "monthly"),

na.rm = TRUE, ncores = 4)

Code Step 2.

Step 3 computes the orographic weights from a fine-scale precipitation climatology. In this case,

the WorldClim2 dataset precipitation at 30 seconds resolution is used although other climatologies

at high resolution could be used. The WorldClim2 dataset is formatted in tiff files that could be

automatically downloaded in the R session thanks to the raster library (Hijmans, 2020). The piece

of code for Step 3 shows how to compute the orographic weights for all individual months at once:

getting the data from the remote dataset, subsetting for the Alps region with a small increment to

correctly compute interpolation (3.5E-11.5E, 41.5N-49.5N), and storing the data in a ‘s2dv_cube’

object to be passed to CST_RFWeights.

The target resolution is the one most suitable for each specific application. To run the SNOWPACK

model, we are interested in the local scale and we choose a target resolution of 0.01°,

corresponding to about 1 km. Therefore, the weights and the RainFARM method (step 4) would be

computed with a refinement factor (nf) 100. However, such a high refinement factor implies a

rather large computational load, and here we show the code using a refinement factor 4. We

recommend the users to approximately calculate the expected size of the final output, as follows:

the original data input to the downscaling step has 25 members, 26 start dates, 31 daily lead times

on 8 months covering a region of 8 by 8 grid points, which 8 times its product is ~ 80 MB; this size

will increase by a factor 10 since the realizations and the refinement factor will be applied on both

spatial dimensions. For a refinement factor of 100 (4), the expected output is ~80 MB x 10 x 100 x

100 (~ 80 MB x 10 x 4 x 4), so around 8 TB (12.5 GB). The users need to consider that the data size

also has implications on the computation time. The result of step 3 is an array with spatial

dimensions and an extra dimension for each month containing the weights for which values

greater (lower) than 1 will amplify (reduce) the precipitation signal from the seasonal forecast

(Figure 4).
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# WorldClim data to s2dv_cube

library(raster)

worldclim <- getData("worldclim", var = "prec", res = 0.5, lon = 5, lat = 45)

wc_month <- lapply(1:12, FUN = function(x) {

res <- crop(worldclim[[x]],

extent(3.5, 11.5, 41.5, 49.5))

res <- as.array(res)

names(dim(res)) <- c('lat', 'lon', 'month')

return(res)

})

xy <- xyFromCell(crop(worldclim[[1]], extent(3.5, 11.5, 41.5, 49.5)),

1:length(crop(worldclim[[1]], extent(3.5, 11.5, 41.5, 49.5))))

lons <- unique(xy[,1])

lats <- unique(xy[,2])

wc_month <- unlist(wc_month)

dim(wc_month) <- c(lat = length(lats), lon = length(lons), month = 12)

wc_month <- s2dv_cube(data = wc_month, lon = lons, lat = lats,

Datasets = 'WorldClim')

weight <- CST_RFWeights(wc_month, lon = exp$lon, lat = exp$lat, nf = 4)

Code Step 3.

Finally, the downscaling method is run in step 4 using the corrected forecast, the slope and weights

computed in the previous steps. Note that this code requires high memory resources, although the

computation can be split by start date and realization if necessary. Figure 6 shows the spatial

resolution improvement given by RainFARM for a specific date when applying a refinement factor

4(10).

weights <- Subset(weight$data, along = 'monthly', indices = c(11,12,1:1:6))

slope <- Subset(slope, along = 'monthly', indices = c(11,12,1:1:6), drop = 'non-selected')

fs <- CST_RainFARM(exp.qm, nf = 4,

weights = weights, slope = slope,

kmin = 1, nens = 10, verbose = TRUE,

time_dim = c("member", "ftime"), nprocs = 4,

drop_realization = TRUE)

fs <- CST_MergeDims(fs, merge_dims = c("ftime", "monthly"), na.rm = TRUE)
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fs$Dates[[1]] <- exp$Dates[[1]]

CST_SaveExp(fs, destination = '/esarchive/scratch/nperez/CSTools_manuscript/')

Code Step 4.
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Figure 6: On the top, the comparison of the original (top-left) and bias-corrected (top-middle)

precipitation spatial field for SEAS5 for the 11th of December 1993 which are inputs of the

downscaling RainFARM method independently of the refinement factor applied, as well as the

slope (top-right), which are results of step 1. The slope used for downscaling on the 11th of

December 1993 is highlighted in red. In the middle (refinement factor 4) and bottom (refinement

factor 100) rows the comparison of the weights and the downscaled precipitation field for SEAS5

for the 11th of December 1993 are shown.
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Taking advantage of PlotForectastPDF again, a visualization of the PDF and the individual

ensembles spatial average for the original SEAS5, the bias adjusted and the downscaled

precipitation is shown in Figure 7. The shape of the PDF is retained in all steps. The 10 realizations

requested for each ensemble member to the CST_RainFARM are clearly shown in the top right

panel.

Figure 7: From left to right, PDF for the original, the bias-corrected by quantile mapping and the

downscaled spatial field (for refinement factor 4) SEAS5 for the area average on the 11th of

December 1993. For each PDF, three categories of equal size are shown: terciles above normal

(blue), normal (gray) and below normal (orange), defined according to the area average of ERA5

reanalysis for the period 1993-2018. Percentages represent the forecast probabilities of each

tercile, the most likely tercile is highlighted with a star and the blue and orange percentages

represent the probabilities for P10 and P90 (hatched areas), respectively.

The SNOWPACK model requires a number of input variables apart from the total precipitation

post-processed with CSTools, namely 2 m air-temperature, atmospheric pressure, relative

humidity, shortwave and longwave incoming radiation, wind speed and ground temperature, at

finer spatial and temporal resolutions (>1 km in space and 1 hour in time) compared to the typical

resolutions of the seasonal forecast system outputs (about 100 km in space and 1 day or 6 hours in

time). In order to provide the SNOWPACK model with realistic meteorological forcing, we apply

bias-adjustment and downscaling techniques depending on the specific variable.
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● Temperature seasonal forecasts are bias-adjusted and downscaled to the study sites so that

the resulting fine-scale climatology is comparable to the observed climatology obtained

from surface station data. The use of CSTools functions to obtain this dataset can be found

in Terzago et al. (2020).

● All other variables are bilinearly interpolated to the coordinates of the study-sites.

After the spatial downscaling, seasonal forecast data are interpolated in time to one hour temporal

resolution with different methods depending on the variable.

Using these variables, the SNOWPACK model is run for each of the 21 seasonal forecasts over the

hindcast period 1996-2016, considering those initialized on November 1st and covering the 7

months ahead, in order to reproduce the most relevant period for the snow dynamics, i.e.

November-May. Figure 8 shows an example of the SNOWPACK model output, and specifically, the

snow depth forecasts obtained from the SEAS5 forecast initialized on the 1st of November 2014

forcing for the area including the station of Bocchetta delle Pisse —2410 m above sea level (a.s.l.).

For each forecast, we obtain an ensemble of 250 snow depth /SWE simulations, derived from the

25 ensemble members of the forecast models by 10 stochastic downscaling realizations for

precipitation. Except for mid-November, the simulations are able to reproduce the variability of the

observed snow depth. Some periods (e.g.: late February) can be considered extreme events since

the observed snow depth overcomes the 95 percentile of the simulations.

Figure 8: Seasonal forecast of snow depth obtained from the SNOWPACK model driven by the

SEAS5 seasonal forecast system data. The forecast, initialized on the 1st of November 2014 and

covering the 7 following months, refers to the station of Bocchetta delle Pisse, 2410 m a.s.l. in

the North-Western Italian Alps. The green and the cyan shadows show the spread and the
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5-95th percentile range of the 250 ensemble-member forecast, while the red line represents

the ensemble mean. Observed snow depth is reported as black dots.

4.3 Calibration and Analog downscaling to drive the SCHEME

hydrological model.

The aim of this use case is to provide dowscaled and calibrated seasonal forecasts as input for the

hydrological model SCHEME (Baguis et al. 2010) to simulate extreme river flows of the longest river

in Greece, the Aliakmon. This will allow the generation of a seasonal ensemble prediction system

that provides the outlooks of water availability for hydro-power and irrigation for the Aliakmon

basin.

The SCHEME hydrological model is the semi-distributed version of the daily time-step lumped

model developed by Bultot and Dupriez (1976). This model was designed first for the Scheldt and

the Meuse River Basins in Belgium and Northern France to estimate the impact of climate changes

on the hydrological cycle but it was also used for hydrological predictions in the medium-range

(Roulin and Vannitsem, 2005) and in data assimilation of large-scale satellite soil moisture (Baguis

and Roulin, 2017). Whereas the model over Belgium relies on parameters collected during a

long-standing ground experience, over the Greek catchment, other sources have been sought and

the structure of the code has been adapted. At the subgrid scale, the main land covers (CORINE

Land Cover) relevant for the Mediterranean region have been grouped according to their

properties and -matched with soil map units. In addition to daily rainfall, the SCHEME model

requires daily minimum, maximum and average temperature as input to calculate the potential

evapotranspiration using a Penman formulation. These will be provided for a domain covering the

Aliakmon basin and a large part of Greece.

Post-processing the seasonal forecasts is absolutely necessary as they suffer from biases and much

higher spatial resolutions are necessary. Indeed, while the typical seasonal forecasts are provided

at a resolution of around 100 km, the spatial resolution required here is 5 km. Our tailored

approach focuses on providing high-quality and high-resolution precipitation forecasts. An analog

approach is used combining both the synoptic-scale pressure over Europe and the regional-scale

rainfall over Greece. For the day of the best analog, the high-resolution fields of both temperature

and rainfall over Greece are considered as the end product. This approach ensures the

spatio-temporal consistency of both fields. Rather than giving detailed code instructions similar to

the previous use cases, an extensive discussion on the data-generation process is provided and the
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code is made available online. Note again that all steps are being executed using only CSTools

functions.

As the reference rainfall dataset the daily data from CHIRPS (Funk et al. 2015) is taken, available at

0.05° resolution. Moreover this dataset incorporates corrections for different mountain elevation

and slope, necessary in the orographically-complex Aliakmon basin with elevations above 2000 m.

For temperature, we use the ERA5-Land (Muñoz-Sabater et al., 2021) available at around 0.1° and

further downscaled to 0.05° resolution using a simple lapse-rate correction.

Figure 9 provides the step-by-step structure of the methodology used while Figure 10 provides a

visual representation of an example. As shown in Figure 9, the overall methodology can be

separated into a calibration phase (steps 1-2) and a downscaling phase (steps 3-5) that uses an

analog approach. The calibration phase starts by loading (using CST_Load) the daily forecast and

observational rainfall data over Greece at 1° resolution. As forecast data, we take the 25-member

of SEAS5 from 1993-2019 initialized in May while the reference is the CHIRPS dataset upscaled to

1° resolution for the same time period. In step 2, these daily rainfall forecasts are calibrated (using

CST_Calibration with method bias) against the CHIRPS dataset. The calibration is done per month

of lead time using a leave-one-out or cross-validation approach. Breaking up the data per month

was done using the CST_SplitDim function.

Figure 9: Scheme of the necessary steps to obtain calibrated and downscaled input for the

hydrological SCHEME model. The abbreviations used are SLP (sea-level pressure), SEAS5, EU

(Europe) and GRC (Greece).

28
Medscope (ERA4CS G.A. 689029) Deliverable D3.1



The downscaling phase starts in step 3 (see Figure 9) with loading the sea-level pressure (SLP) of

the forecast and reference at 1° resolution over Europe. While again SEAS5 is used for the

forecasts, the reference dataset is now ERA5 (Hersbach et al., 2020) and upscaling is applied to

obtain the 1° resolution. Subsequently, in step 4, an analog approach is used. Thereby the

calibrated precipitation fields over Greece and the SLP fields over Europe of a particular forecast

day are selected. These fields are then compared to all fields of a large climatological reference

dataset in order to find the best analog (using the Analogs function). This dataset covers the period

1993-2019 but includes only days with the same month as the selected day (and excludes the

selected day). Separating the data per month was again done using the CST_SplitDim function. The

criterion to find the best analog is called Local_dist and minimizes the Euclidean distances of the

large-scale SLP and the local-scale rainfall patterns, both at 1° resolution. Finally, for the day

corresponding to the best analog, the CHIRPS precipitation field at 0.05° resolution is then

considered as the calibrated and downscaled field of the selected day (See Figure 10c and 10d). In

order to obtain the temperature, the ERA5-Land dataset over Greece are considered for the day of

the best analog. More specifically the ERA5-Land daily minimum, maximum and average

temperature at 0.1° resolution are downscaled to a resolution of 0.05° resolution using lapse-rate

height corrections. Finally, the downscaling procedure steps 4-5 are iterated over all days and all

ensemble members of the seasonal forecast in order to obtain a fully-calibrated and downscaled

seasonal forecast over Greece.

Figure 10: Comparison of the original forecast (a), calibrated forecast (b), the analog (c) and the

downscaled (d) forecast over Greece for SEAS5 for the 24th of May 1993.

29
Medscope (ERA4CS G.A. 689029) Deliverable D3.1



Code Availability

CSTools 4.0.0 is released under the Apache License version 2.0. CSTool is being developed at

BSC-CNS GitLab repository https://earth.bsc.es/gitlab/external/cstools/ and shared in the CRAN

repository https://CRAN.R-project.org/package=CSTools. The code to reproduce the uses cases and

plots shown in this deliverable can be found in the CSTools GitLab repository

https://earth.bsc.es/gitlab/external/cstools/-/tree/master/inst/doc.
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