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1. EXECUTIVE SUMMARY 

One of MEDSCOPE main goals aims at improving predictability on seasonal timescales over the Mediterranean. With 

this purpose, Work Package (WP) 2 is intended at gaining knowledge over possible sources of predictability and 

relevant mechanisms, through a series of targeted sensitivity experiments with dynamical models. Within WP2, and 

together with sensitivity experiments, task 2.4 is dedicated to the development of an empirical forecast system able to 

operationally produce seasonal forecasts, taking advantage of results from sensitivity experiments.  

A preliminary version of the empirical system was developed during the first part of the project, based on multiple 

linear regression and global climate indices, with fixed predictors and configuration. This version showed the potential 

of this type of model. Details can be found at Report M2.3 and at Rodríguez-Guisado et al., 2019. 

 Here, a new and final version of the empirical model based on partial least squares regression is presented. Originally 

designed as a flexible tool able to automatically select predictors from an initial pool, the model can be run with many 

configurations including different predictands, resolutions, leads and aggregation times. We present here results from a 

configuration producing probabilistic forecasts of seasonal (3 month averages) temperature and precipitation, their 

verification and comparison against a selection of state-of-the-art seasonal forecast systems based on dynamical models 

in a hindcast period (1994-2015). The model is able to produce spatially coherent anomaly patterns, and reach levels of 

skill comparable to those based on dynamical models. Examples of the model usage for evaluating the impact on skill 

of certain predictor helping in the search and understanding of new sources of predictability are also shown.  

 
2. DETAILED REPORT  
 

2.1.- Introduction 

Dynamical models for seasonal forecasting have noticeably improved during the last decades mainly due to the 

advance, both in the estimate of the atmospheric initial conditions as well as the model physics supported further by 

computing capabilities. However, they still show low skill over extratropical latitudes (Kim et al. 2012).   As a result of 

this low skill over extratropical latitudes, seasonal forecasts tend to show lack of consistency among seasonal 

forecasting systems preventing the automatic usage of model outputs. Consequently, from an operational perspective, 

progress on seasonal forecasting has been historically constrained in many regions of the globe. The surroundings of the 
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Mediterranean Sea are specially affected by this low skill, due either to lack of predictability or to deficiencies in 

forecasting systems exacerbated by its complex orography and land-ocean distribution (Weisheimer et al. 2011; Doblas-

Reyes et al. 2013).   

The MEDSCOPE project have as one of its main objectives a better comprehension of the mechanisms driving the 

climate variability in the Mediterranean region. Among these mechanisms are those at the basis of the tropical and 

extratropical as well as polar and mid-latitudes teleconnections, and their impact on the predictability at different time 

scales, in particular at seasonal time scale. This better knowledge of the mechanisms behind climate predictability was 

achieved by a thorough evaluation of the state-of-the-art climate forecast systems and of the most recent and 

comprehensive observational databases and by conducting new sensitivity studies with improved or idealized 

representations of boundary components (land surface, tropical oceans) in participating climate models. A final by-

product of the project was the development of an empirical forecast system incorporating new predictors based on the 

analyses of predictability sources for the Mediterranean region. This empirical forecasting system can be of practical 

use as a new source of seasonal forecasts for the Mediterranean region and as a benchmark for the evaluation of existing 

dynamical prediction systems. A preliminary version of the empirical system, based on multiple linear regression 

(MLR) was developed within the first part of the project. In this version, the Mediterranean domain was divided in a 

series of sub regions, and fixed predictors were assign for every one of them (details can be found at Rodríguez-

Gusiado et al, 2019). Despite lacking skill over large areas of the domain, for certain areas and seasons the empirical 

system showed skill comparable or to that of the dynamical models, showing the potential for this type of model. 

The final version of the empirical model has abandoned the sub regions scheme, and it has been developed 

independently from the original. The empirical model is programmed to serve as a flexible tool, able to automatically 

extract relevant information from a pool of predictor candidates. The model is prepared to perform dimensional 

reduction of predictors by calculation of main variability modes using Partial Least Squares (PLS) regression (Haenlein 

and Kaplan 2004; Wegelin 2000). The model can produce probabilistic forecasts for any variable with different lead or 

aggregation times. Temperature and precipitation probabilistic forecasts for three months averages and one month lead 

time will be shown as an example. As this is the second version of the empirical model presented, this final version has 

been named “AEMET-S2”, and it will be consequently named  hereafter. 

This text is structured as follows: in Section 2, the method and datasets are described; sources of predictability and 

selection of predictors are described in Section 3; verification of the empirical model and comparison with dynamical 
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models are presented in Section 4; a discussion of results is included in Section 5; and finally conclusions are 

summarized in Section 6. 

  

2.2. Methodology and data 

2.2.1   Domain: 

As the MEDSCOPE project is focused on the Mediterranean area, all results shown here will be presented in a domain 

defined by 15W, 50E, 27.5N, 55N (Fig 1a). However, the forecast domain is defined as an input parameter in 

the code and can be easily changed. In order to support activities to other RCOFs, all calculations were 

conducted using an extended domain (20W, 60E, 12.5N, 55N) (Fig 1b).  

a)                                                                          b) 

   

Fig 1. a) Domain selected; b) extended domain 

2.2.2   Predictands 

As most seasonal forecasts are based on limited to surface temperature and precipitation, and as these variables 

are mostly analysed in sensitivity experiments, the developed method and code will be focused on them. Anyway, 

predictands can also be selected as input parameters. Lead time of forecasts and time aggregation (e.g., 1 month, 3 

months) of predictands can be selected too. Here, forecast for three months average of predictands and for one month 

lead time (i.e., last predictor data available is two months before forecast date. For example, if we are producing a 

forecast for February-April, predictors will be available until December) will be presented. 
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As verifying data, given the differences in horizontal variability of temperature and precipitation and also the 

different observational coverage and quality, we have decided to use reanalysis data for temperature and observational 

gridded datasets for precipitation.  However, we are aware that observational gridded datasets lack in situ observations 

over many areas. Figure 2 shows data availability for GPCC (a) and for EOBS (b) datasets. As can be seen in the figure, 

there are large parts of the domain that are not covered by observations. Usually, gaps are filled by statistical procedures 

or by satellite data. As the PLS regression method here applied calculates predictors decomposition based on covariance 

between predictors and predictands, artificially filled data can affect the way this decomposition is calculated, and so, 

affect forecasts skill over regions actually with good observational coverage. For that reason, datasets using satellite 

data are preferred over the ones using statistical procedures to fill the gaps, and GPCPv2.3 have been chosen for 

precipitation (Adler et al. 2003. https://psl.noaa.gov/data/gridded/data.gpcp.html) 

In a similar way, resolution of the predictands can affect the way in which predictors are decomposed: higher resolution 

predictands can capture variability modes of smaller scale. (WMO, 2020) recommends to perform an analysis of 

general circulation anomalies and main variability modes when producing a seasonal forecast, so low resolution 

predictands will be used for the version presented here, aiming at focusing on large scale variability. However, higher 

resolution predictands can be used when producing forecasts for reduced areas and there is interest on local features 

a)                                                                 b) 

  

Fig 2. a) Availability of observations on every grid point on the Global Climatology Precipitation Center (GPCC) 

version 8 data set for December 2016; b) EOBS data available data for 2019-2020 winter (DJF). 

 

Finally, the following data has been chosen for the predictands: 
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-Temperature: ERA5 2 metres temperature, monthly averaged, 2.5x2.5 degrees, from 1979 to 2019, C3S (2017). 

https://cds.climate.copernicus.eu/cdsapp#!/home 

-Precipitation: Global Precipitation Climatology Project (GPCP), monthly averaged, 2.5x2.5 degrees, from 1979 to 

2019 (Adler et al, 2003, https://psl.noaa.gov/data/gridded/data.gpcp.html) 

 

 2.2.4 Dynamical models used for skill analysis. 

In section 4, results will be presented and forecast maps produced will be analysed. Together with every forecast, score 

maps are generated to provide information about the skill of the empirical model. However, to put it in perspective, skill 

needs to be compared to that of dynamical models currently used for operational seasonal forecasting. For that purpose, 

scores are calculated too for Copernicus C3S models, in particular for versions on the following list: 

-ECMWF-S5: https://gmd.copernicus.org/articles/12/1087/2019/gmd-12-1087-2019.html 

-DWD-S2: https://www.dwd.de/EN/ourservices/seasonals_forecasts/project_description.html 

-CMCC-S3: https://sps.cmcc.it/documentation/ 

-MF-S6: http://seasonal.meteo.fr/sites/data/Documentation/doc_modele/Model_MF-S6_C3S_technical_en.pdf 

-UKMO-S13 (GloSea5): https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/user-

guide/technical-glosea5 

 

2.2.5   Running the model 

Given the potential high number of candidates in the initial pool of potential predictors, a reduction of dimensionality is 

frequently recommended before starting any computation (see, e.g., WMO 2020). Considering that predictands are 2 

dimensional spatial fields, is also advisable to incorporate information both on predictands themselves and their 

covariance. In order to meet both requirements we have made use in the empirical model of the PLS-regression method 

(Haenlein and Kaplan 2004, Wegelin 2000) as it is available on python sklearn 0.23.2 module (https://scikit-

learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html). This method performs a 

https://psl.noaa.gov/data/gridded/data.gpcp.html
https://www.dwd.de/EN/ourservices/seasonals_forecasts/project_description.html
https://sps.cmcc.it/documentation/
http://seasonal.meteo.fr/sites/data/Documentation/doc_modele/Model_MF-S6_C3S_technical_en.pdf
https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/user-guide/technical-glosea5
https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/user-guide/technical-glosea5
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
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decomposition of the predictor space in a similar way as EOFs. The EOF analysis allows a set of predictors to be 

rearranged into a new set of predictors, orthogonal with each other and that maximizes the amount of predictors 

variance that can be explained with the smallest number of EOF predictors. The PLS-regression method, instead of 

fixing the amount of variance explained makes use of a  iterative method that fixes  as an input parameter the number of 

factors (or independent vectors) used (Haenlein and Kaplan 2004), and maximizes the amount of predictand variance 

explained using those factors. Previously, and to reduce the initial number of predictors, only those surpassing a 

minimum correlation threshold with variability modes of the predictand are retained and incorporated into the algorithm 

system. 

So, as we have two different parameters that can be set arbitrarily, forecast is performed for several configurations of 

both of them. A maximum number of components n (4 for the version presented here) is introduced as input parameter, 

and three values of correlation c (0.35, 0.42, 0.49). Information for the year “i” to be forecasted is removed from the 

datasets. Then, for the remaining (n-1) years, a hindcast H is calculated using Leave-One-Out (LOO) technique, 

training the model with every possible combination of c and n. Every time the model is trained with a set of n-2 years 

and a (c,n) configuration, a forecast F for the year i is produced. Then, at every grid point, correlation between every H 

and the predictand is calculated, and those combinations below percentile 80 of correlation are discarded. Forecast 

ensemble for the year i will be composed of F values for the remaining (c,n) combinations. The process is repeated for 

every year i of the series, to generate a hindcast that allows skill evaluation.  

Trends (e.g. global warming trend affecting temperature) are removed from both predictands and predictors previously 

to run the model and the predictand trend is added at the end of the computation. 

Parameters like lead time of the forecast, aggregation time of the predictand, resolution...can be introduced as input 

parameters. To help interpret the forecast produced for a particular configuration, skill maps are calculated and 

displayed based on its hindcast. 

 

 

2.3.- Sources of predictability; choosing predictors 

The model automatically selects and combines predictors from an initial pool. Table 1 shows the predictors used for this 

version of the model. A comprehensive list of global climate indices has been selected, including main teleconnection 
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patterns from the Climate Prediction Center (CPC, https://www.cpc.ncep.noaa.gov/), SST-based indices, ENSO indices 

like SOI and MEI, and snow cover indices.  Additionally, some specific predictors relevant for the Mediterranean 

region have been included. All SST based indices (with the exception of WHWP, which is downloaded from NOAA’s 

CPC) are calculated from ERA5 SST data (downloaded from 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form), averaging 

over the areas detailed in Table 1. The same latitude-longitude areas are used to calculate averages of surface layer heat 

content. Heat content is calculated from MetOffice EN4.2.1 reanalysis, data 

(https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-1.html, Levitus et al. 2009), averaging temperature data for 

a layer between surface and 200m depth.  

Snow based indices include snow cover extent (Robinson et al. 2012) over Northern Hemisphere, Eurasia and North 

America and averages of it over certain regions of Siberia, North America and Scandinavia that show good correlation 

with winter North Atlantic Oscillation (NAO). Averages have been produced and downloaded at 

https://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=rutgers_nhsnow  

Averages of zonal wind at 10 hPa both over polar areas and over the tropics (to represent polar vortex variability and 

Quasi Biennial Oscillation (QBO)) are incorporated into the pool of predictors, too (see Table 1). ERA5 monthly 

averaged zonal wind have been used to produce these predictors. 

Sensitivity experiments in the frame of the MEDSCOPE project (Ardiluoze et al. 2020)  have shown the impact of May 

soil moisture in the intensity and frequency of heat weaves, so modes of variability (rotated main EOFs (Barnston and 

Livezey 1987) for every month ) for soil moisture on a window defined between 30N-60N , 10W-40E have been 

included. Soil moisture data is derived from ERA5 volumetric soil water layer, as the average of the three firsts layers 

available.  

As many predictors are climate indices, which are calculated from monthly anomalies, predictors will be also based on 

monthly averaged values.  In addition to series based on their monthly values, an incremental series is constructed for 

every index, based on the difference between one month and the previous one values. This is done under the assumption 

that some particular climate system processes are able to provide predictability not only by the absolute value of a 

predictor, but by its rate of change as well. An example of this behaviour is the Snow Advance Index (Cohen and Jones 

2011), where the predictor is based on the difference in snow extent at two different times. 

 

https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-1.html
https://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=rutgers_nhsnow
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AAO Antartic 
Oscillation 

https://psl.noaa.gov/data/correlation/aao.data 

AO Artic 
Oscillation 

https://psl.noaa.gov/data/correlation/ao.data 

EA East 
Atlantic 

ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/ea_index.tim 

EA/W
R 

East 
Asia/West 
Russia 

https://psl.noaa.gov/data/correlation/ea.data 

EP/NP East 
Pacific/No
rth Pacific 

https://psl.noaa.gov/data/correlation/epo.data 

NAO North 
Atlantic 
Oscillation 

https://psl.noaa.gov/data/correlation/nao.data 

NP North 
Pacific  

https://psl.noaa.gov/data/correlation/np.data 

PNA Pacific 
North 
American 

https://psl.noaa.gov/data/correlation/pna.data 

SCAN
D 

Scandina
vian  

ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/scand_index.tim 

WP West 
Pacific 

https://psl.noaa.gov/data/correlation/wp.data 

S
tr

a
to

s
p

h
e

re
 

QBO Quasi 
Biennial 
Oscillation 

Averaged u wind (10S-10N at 10hPa) 

u10n Northern 
u at 
10hPa 

Averaged u wind (60N-85N at 10 hPa) 

u10s Southern 
u at10hPa 

Averaged u wind (85S-60S at 10 hPa) 

E
N

S
O

 MEIv2 Multivariat
e ENSO 
index 

https://psl.noaa.gov/enso/mei/data/meiv2.data 
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SOI Southern 
Oscillation 
index 

https://psl.noaa.gov/data/correlation/soi.data 
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WTIO Western 

Tropical 
Indian 
Ocean 

Averaged (50E-70E,10S-10N) 

SWIO South 
Western 
Indian 
Ocean 

Averaged (31E-45E,32S-25S) 

SETIO South 
Eastern 
Tropical 
Indian 
Ocean 

Averaged (90E-110E,10S-0) 

DMI Dipole 
Mode 
Index 

Calculated (WTIO-SETIO) 

P
a
c
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ic
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c
e

a
n

 

S
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e
a
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o

n
te
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(2
0

0
m

) 

T
a
v
e
2

0
0
m

 

Nino1
2 

Nino12 Averaged (90W-80W,10S-0) 

Nino3 Nino3 Averaged (150W-90W,5S-5N) 

Nino4 Nino4 Averaged (160E-150W,5S-5N) 

Nino3
4 

Nino34 Averaged (170E-120W,5S-5N) 

Nino3
4-
Nino1
2 

Nino34 - 
Nino12 

Calculated 

A
tl

a
n

ti
c
+

M
e
d

it
e

rr
a
n

e
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n

 O
c
e
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n

s
 

S
S
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n
d
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e
a
t 

c
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n
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(2
0

0
m

) 

T
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0
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TNA Tropical 
Northern 
Atlantic 

Averaged (57.5W-15W, 5.5N-23.5N) 

TSA Tropical 
Southern 
Atlantic 

Averaged (30W-10E, 20S-0) 

NAT North 
Atlantic 
Tropical 

Averaged (40W-20W, 5N-20N) 

SAT South 
Tropical 
Atlantic 

Averaged (15W-5E, 20S-5N) 
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TASI NAT - 
SAT 

Calculated 

Atl1 Locally 
derived 

Averaged (40W-10W, 50N-60N) 

Med1 Locally 
derived 

Averaged (0-8E, 33N-46N) 

Med2 Locally 
derived 

Averaged (10E-22E, 33N-46N) 

Med3 Locally 
derived 

Averaged (25E-40E,30N-40N) 

WHW
P  

Western 
Hemisphe
re Warm 
Pool 

https://psl.noaa.gov/data/correlation/whwp.data 

S
n

o
w

 e
x
te

n
t 

SnNH Snow 
extent (N. 
Hemisphe
re) 

https://climexp.knmi.nl/getindices.cgi?WMO=RutgersData/nh_snow&STA
TION=NH_snow_cover&TYPE=i&id=someone@somewhere 

SnNA Snow 
extent(No
rth 
America) 

https://climexp.knmi.nl/getindices.cgi?WMO=RutgersData/namerica_snow
&STATION=North_America_snow_cover&TYPE=i&id=someone@somew
here 

SnEA Snow 
extent 
(Eurasia) 

https://climexp.knmi.nl/getindices.cgi?WMO=RutgersData/eurasia_snow&
STATION=Eurasia_snow_cover&TYPE=i&id=someone@somewhere 

Snow
1 

Locally 
derived 

Averaged (10E-20E, 58N-67N) 

Snow
2 

Locally 
derived 

Averaged (110W-85W, 38N-50N) 

Snow
3 

Locally 
derived 

Averaged (38E-67E, 38N-54N) 

Snow
4 

Locally 
derived 

Averaged(75E-145E, 25N-55N) 

Snow
3-
Snow
4 

Locally 
derived 

Calculated locally (Snow3-Snow4) 

Soil_w
etness 

Variability 
modes  

Rotated PCA from monthly anomalies (calculated 10W-40E, 30N-60N 
box) 
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Table1. List of predictors used. All oceanic averaged indices are calculated both for Sea Surface Temperatures (SST 

from ERA5, downloaded from Climate Data Store). Snow averages have been calculated at 

https://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=rutgers_nhsnow). Soil wetness variability modes 

have been calculated from monthly anomalies of ERA5 volumetric soil water layer (average of layers 1, 2 and 3) 

 

 

2.4.- Verification of the empirical model and comparison with dynamical models 

Figures 3 and 4 show some examples of the empirical model operational display.  Figure 3 shows the probability of the 

most likely tercile for temperature forecast produced by the model and plotted together with a skill map (Random 

Probability Skill Score, RPSS) based on the hindcast. Figure 4 shows forecasted precipitation probability for upper and 

lower terciles again plotted together with skill maps (ROC area). Besides, a dry mask has been applied for those grid 

points recording less than 2 mm over the season during at least 10 years during the hindcast period. 

 

https://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=rutgers_nhsnow
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Fig 3. Example of forecasted temperature. Probability of upper (a) /lower (b) tercile, with transparency layer based on 

ROC area score. ROC area score for upper (c) /lower (d) tercile (hindcast period1993-2019) 

 

Fig 4. The same as Figure 3 but for precipitation. 

 

 

.  

As explained in section 2.2, initially low resolution predictands have been chosen aiming at producing forecasts focused 

on large scale anomaly patterns. Watching at Figures 3 and 4, relatively smooth maps can be appreciated, 

showing synoptic scale patterns. Skill maps suggest, as happens with dynamical models, that skill is better for 

temperature than for precipitation, and that it varies from one region to another. However, areas with high/low skill 

seem to be distributed following synoptic scale patterns too. 
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Higher temperature skill could be related as well to trend, which is removed both from predictands and from predictors 

before any calculation. After removing it, the model is run, and then predictand trend is added to the results, so a 

significant part of temperature may come from it. 

 Although the model version presented here makes use of large scale predictands, if higher resolution data are available 

over smaller domains, the system can also be run using them, as shown in Fig. 5. That may allow the model to capture 

locally relevant modes of variability, improving skill over the large scale version. 

 

Fig 5. Same as figure 4, but for a smaller domain (using EOBS-21e (0.25), Cornes et al. (2018) as predictand) 

 

Consequently, and looking at results, the model seems to produce coherent anomaly patterns, and to have skill over 

certain areas and seasons. To analyse how it performs over the domain, skill scores have been calculated for both the 

empirical system and some selected state-of the-art dynamical seasonal forecasting systems. Figure 6 shows RPSS maps 

for June-July-August (JJA) for temperature and precipitation. For all models, temperature forecasts show more skill, 
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and seem to have less skill over Atlantic shores. For precipitation, skill varies from one area to another, but the 

empirical model seems to perform at a level comparable to that of dynamical models. 

 

a) 

 

b) 
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Fig 6: August-October RPSS for AEMET-S2 and Copernicus models for temperature (a) and precipitation (b) 

However, skill changes drastically among seasons. To have a clearer picture of how models perform over the year, 

scores have been averaged for the domain and compiled in Table 1 representing RPSS area values for temperature and 

precipitation averaged over the domain. For temperature, the model seems to have more skill in summer months. For 

those months, skill is comparable to dynamical systems. Furthermore, model tends to show more/less skill for those 

months where dynamical models do, so it seems to be able to capture predictability when available 

 

 

 

Figure 7. Skill comparison with C3S models averaged for the domain (15W-52.5E, 25.0-50N). Every column represents 

a season, and every row a model. Period is 1994-2015. Scores have been calculated using non-parametric bootstrapping 

(1000 samples) 
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As seen in Fig 6, skill varies among areas, so it can be interesting to do the same exercise but averaging over more 

reduced areas. Fig 8 shows a couple of examples, for the Balkans and for Iberian Peninsula. Although behaviour for 

precipitation is less consistent than for temperature, over certain areas and seasons, skill for precipitation can be at the 

level or even slightly higher as for dynamical models.  

 

 

Figure 8. Same as figure 6, but for selected domains: Iberia (36-44-N, 10W-4E, (a)) and the Balkans (35-50N, 15-30E, 

(b))) 

 

 

 

 

 



 

Medscope (689029) Deliverable D2.3 
 

20 

 

2.5.- Discussion 

Although the system is prepared to add predictors as new sources of predictability emerge, the version of the empirical 

model here evaluated represents an additional source of information to be integrated together with systems based on 

dynamical models when producing subjective or objective forecasting. As it has been shown in Sec 4 this empirical 

model is able to reach similar levels of skill as dynamical models. As can be appreciated from figure 8 (c and d)), in 

many occasions, the empirical model tends to show higher skill for those seasons and regions where dynamical models 

do, and vice versa. It seems that, in those cases, dynamical models are able to capture, at least partially, the same 

sources of predictability contemplated by the empirical system. Moreover, the empirical model shows for certain 

regions and seasons some amount of skill where dynamical models fail. Future work should include a more detailed 

analysis of cases where discrepancies appear in order to identify new predictors that may contribute to the improvement 

of forecasts and gain understanding on processes related to sources of predictability.  

In fact, a better understanding of predictability sources was one of the goals of the MEDSCOPE project and different 

sensitivity experiments were conducted to analyse the role of several sources of predictability (see other contributions in 

this special issue). The empirical model was conceived  not only as an operational system capable of producing 

seasonal forecasts but also as a tool -because of the automatic selection of predictors from a pool- to analyse the impact 

on skill of one particular predictor (or a group of them) by just adding or removing it from the pool, and comparing the 

skill. 

One of the sources of predictability analysed in the MEDSCOPE project is related with soil moisture in spring. 

Ardiluoze et al. (2020) have shown that May soil moisture can influence the frequency and intensity of summer heat 

waves. Following these results, soil moisture data from ERA5 reanalysis were included in the initial predictors pool. As 

an example of usage of this empirical model as a diagnostic tool in the search of predictability sources, we have 

included an analysis of soil moisture influence in temperature forecasts. Figure 9 shows the different skill of the 

forecasted temperature upper tercile, including (a) vs not including (b) soil moisture information on the initial pool. An 

increment can be seen over large parts of Continental Europe. The impact of including soil moisture can be seen more 

clearly on Fig 10, where differences of two maps in Fig 9 are plotted. Positive values indicate areas where skill is higher 

when including soil moisture information. Most continental Europe shows a clear improvement of the warmer tercile 

skill when soil moisture information is added. Iberian Peninsula, Western France and Turkey areas constitute an 
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exception, where the influence of the SST and Atlantic variability (in the case of Iberian Peninsula and France) can be 

dominating. 

 

Figure 9: Comparison of temperature upper tercile skill (JAS) with (a) and without (b) soil wetness as predictor 
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Figure 10: Difference between both figure 9 maps (a-b). Positive values represent improvement adding soil moisture 

information. 

 

This analysis can be easily repeated for other predictors. Of course, there are many other factors that can influence skill, 

but we think it can be a useful tool for analysing a potential source of predictability. 

 

However, for some seasons and areas, the model still lacks skill. Besides the insufficient identification of predictors for 

such areas and seasons, another possibility explaining this behaviour may lay on the linear relationships assumed by the 

model. Furthermore, we are assuming that teleconnections are stationary, and this could not be the case for some 

predictors. For example, winter has been recently considered as a “window of opportunity” for predictability in the 

Western European facade manifested by a better forecasting of the winter North Atlantic Oscillation (NAO) by 

dynamical models and the identified correlation between winter NAO and  predictors based on autumn snow cover 

advance and sea ice. However, the nature of the associated mechanisms seems to change in function of the period 



 

Medscope (689029) Deliverable D2.3 
 

23 

studied (Douville et al, 2017, Wegmann et al, 2020). One possibility to explain that variation could be just that long 

term variability may affect these teleconnections (Wegmann et al, 2020). To better illustrate this change of behaviour in 

snow teleconnections, Fig 11 shows correlation between winter (DJF) NAO and autumn snow cover over North 

America. Differences between 1980-2000 and 2005-2019 periods are evident, consequently a linear model based on 

snow cover over this region trained during the first period will consistently fail on its forecast during the second. 

Additionally, it could be hypothesized that rapid changes experienced in the Arctic regions during recent years may 

have driven the climate system to a new state with interactions and processes different to the ones observed in the past, 

used in the training of the model. Rapid changes, on the other hand, tend to be associated with non-linear processes, 

which are impossible to mimic using a linear model. 

As expected -especially in a climate change context- results seem to be sensitive to the training period. A difficult 

balance between a period long enough for reliable fitting and at the same time representative of the forecasted 

conditions period has to be achieved. A future version of the model could incorporate cross validation tests to identify 

the best fitting period for every season.  

a)                                                                     b) 

 

Figure 11. Correlation between winter (DJF) NAO and Snow Cover Extent (Rutgers University Snow Lab 

(https://climate.rutgers.edu/snowcover/) over North America, from 1980 to 2000 (a) and from 2005 to 2019 (b). 

 

 

2.6.- Conclusions 



 

Medscope (689029) Deliverable D2.3 
 

24 

The final version of an empirical model developed within the framework of the MEDSCOPE project has been presented 

and verified for the Mediterranean domain. The model is able to produce spatially coherent anomaly patterns, and reach 

levels of skill comparable to those of seasonal forecasting systems based on dynamical models. The comparable skill of 

the empirical model described here and state-of-the-art dynamical systems permits its usage as an additional source of 

information when producing operational seasonal forecasts combining different models either subjectively or making 

use of some combination algorithm (Sánchez García et al. 2019). Pros and cons of empirical and dynamical seasonal 

forecasting systems have been analysed and discussed for many authors (Mason and Baddour 2008; WMO 2020) and 

many of them insist in the complementarity of both approaches. In favour of the empirical systems in general - and of 

this system in particular- we can mention that: first, they only need modest computational resources; second, the 

identification and selection of predictors allows a straightforward way for the predictability and skill attribution of 

forecasts at seasonal scale; and third, unveiling of new sources of predictability over the region can be very easily 

incorporated to the system simply by adding new predictors to the initial pool. Among the disadvantages of the 

empirical systems, it is widely acknowledged that: first, their quality heavily depends on the identification, selection 

and quality of predictors; and second, they are usually developed and tuned only for specific regions. 

It has been shown that skill varies among variables, areas and seasons, as also happens with dynamical systems. In 

order to circumvent these differences in skill and to facilitate the operational use of model outputs, the system always 

incorporates verification maps attached to each seasonal forecast. Also forecast maps make use of a transparency layer 

based on skill over a hindcast period to highlight/fade out grid points showing some/no skill.  

 

Additionally, the model has flexibility to be used with different resolution predictands, lead and aggregation times. 

Predictors are selected automatically from an initial pool, so the model can also be used to evaluate the impact on skill 

of a certain predictor, and help in the search and understanding of new sources of predictability. Tests done analysing 

the impact of soil moisture over summer temperature support results obtained in sensitivity experiments done with 

complex dynamical models. 

 

Future work should incorporate an analysis of the seasons with low skill, and the possible impact of changes on the 

Artic region and the length of the training period. 
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We think there is still room for improvement focusing on the search of new predictors. On this direction, a tool for 

spatial exploration is currently being developed, intending to identify areas that show stable correlation between 

predictor and predictand on a particular period, and automatically generate additional predictors whose impact can be 

tested using the model. This tool would have the additional advantage of helping to make the system less region-

dependant, as automatically could search for relevant predictors for the region of study, mitigating one of the typical 

disadvantages of empirical models mentioned earlier. 

 

 
  
 
A manuscript describing the empirical model has been submitted to Climate Dynamics. 
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